
STA 114: Statistics

Notes 2. Statistical Models and the Likelihood Function

Describing Data & Statistical Models

A physicist has a theory that makes a precise prediction of what’s to be observed in data. If
the data doesn’t match the prediction, then the theory is “falsified”. A statistician only has
an imprecise description. This could be either because the theory is imprecise, or because
random errors are introduced in collecting the data, or a combination of the two.

Therefore a statistician’s data, from the perspective of her theory + data collection
method, is an “uncertain” quantity X. Any uncertain quantity can be best described by a
set of values S the quantity may assume, with a pdf/pmf f(x) on S. The pdf/pmf is to
be interpreted as follows: f(x1)/f(x2) = r means that X = x1 is r-times as plausible as
X = x2.

If the data can be described by a single pmf/pdf then there is no need of statistical
analysis. Statistics is needed when a multitude of competing theories lead to a multitude of
pmfs/pdfs. When all these pmfs/pdfs are collected together, we have a statistical model
for our analysis. If θ denotes the quantity by which the constituent pmfs/pdfs of the model
differ from each other, then we can write each pmf/pdf as f(x|θ). The quantity θ is a
“parameter” of this model. The set Θ of all possible values of θ is called the parameter space
of the model.

Example (Opinion Poll). Take for example a study where one wants to know what per-
centage of students in a certain university are in favor of a recent government policy. For a
large university, soliciting every student’s opinion is impossible. The researcher may want to
draw a random list of n = 500 students and quiz them on their opinion regarding the policy.
A random list gives the best chance of guarding against systematic biases in obtaining a
representative sample of students.

The data here is the number X of students in the sample who are in favor. If the
researcher thinks that a fraction p of the students, among a total of N university students
are in favor of the policy, then X can be described as hyper-geometric pmf f(x|p) given by

f(x|p) =

{
(mx)(N−m

n−x )
(Nn)

for x = 0, 1, 2, · · · ,min(n,m)

0 otherwise

where m = Np is the total number of students in the university who are in favor of the
policy. The fraction p represents the researcher’s theory about the popularity of the policy
among college students. If she considers all possibilities 0 ≤ p ≤ 1, then here statistical
model for X is {f(x|p) : p ∈ [0, 1]} with f(x|p) given as above.
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Figure 1: X = number of students favoring the policy in a sample of 500 students. Descrip-
tion of X under hypergeometric (left) and binomial distributions (right) for three possible
values of p = 0.25, 0.5, 0.75.

When N is very large compared to n, we can also represent X by the binomial pmf

f(x|p) =

{ (
n
x

)
px(1− p)n−x for x = 0, 1, 2, · · · , n

0 otherwise

Now the researcher’s model is {f(x|p) : p ∈ [0, 1]} with f(x|p) given by the binomial pmf
above. Figure 1 below shows what the researcher expects to see as data X under the
hypergeometric or the binomial distribution for three possible values of p, namely, p = 1/4
(solid line), p = 1/2 (broken line) and p = 3/4 (dotted line).

Example (Trend of TC counts). A climate researcher wants to study whether hurricane
activity is intensifying with time. One way to do it is to study the annual counts of tropical
cyclones (TC) in an ocean basin, say the north Atlantic basin, for the past 100 years. The
data is then of the form X = (X1, X2, · · · , X100), with Xt giving the TC count in year t.
To describe this data, we can first focus on describing one Xt. Since Xt is a count, we can
describe it by a Poisson pmf:

ft(xt|µt) =

{
e−µtµ

xt
t

xt!
for xt = 0, 1, 2, · · ·

0 otherwise

where µt represents the expected count for year t. Now to describe, X = (X1, X2, · · · , X100)
we can treat the component Xt’s as independent and write

f(x|{µt}) = f1(x1|µ1)× f2(x2|µ2)× · · · × f100(x100|µ100)

which gives the joint pmf of X at x = (x1, x2, · · · , x100).
Although the above gives a description of X, it is not clear how to study the climate

researcher’s question within this framework. To achieve this, we now need to say something
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Figure 2: X = annual TC counts for 100 consecutive years. Description of X under Poisson
distributions with mean µt in year t. Three possible linear specifications µt = µ0 + β(t− 1)
are considered.

about how the different µt compare to each other, and in particular, how they evolve over
time. One possible description is the following:

µt = α + β(t− 1), t = 1, 2, · · · , 100

which says that the expected annual counts are increasing linearly in time, with slope β.
The research question of whether TC activity is increasing can now be represented by

various values of (α, β). In particular, a positive sign of β means that TC counts have an
upward trend, with larger β indicating faster growth. On the other hand, a zero or a negative
value of β indicates no or downward trend. Therefore a statistical model for X is given by
{f(x|µ0, β) : α ∈ (a, b), β0 ∈ (c, d)} for well chosen limits a, b, c, d, where

f(x|α, β) = f1(x1|α)× f2(x2|α + β)× · · · × f100(x100|α + 99β).

Figure 2 shows the description of X under three choices of (α, β): (20, 0.2), (10, 0.25) and
(20, 0).

Note that unlike the previous example, the the choice of model for this example was a
lot less obvious. Indeed, one could use many distributions, instead of a Poisson pmf, to
describe each Xt. Furthermore, the evolution of µt over time t, could also be described in
many different ways. What we have built here is “a” description of the data, whether there
is a better description can always be debated.

The Likelihood Function

Suppose a statistical model {f(x|θ) : θ ∈ Θ} has been constructed for data X, with each
θ representing a different theory. When we observed data X = x, we can compare two
parameter values (i.e., two theories) θ = θ1 and θ = θ2 by looking at the ratio f(x|θ1)/f(x|θ2).
If this ratio equals 2, then the data X = x is twice as likely to be observed under θ = θ1
than it is under θ = θ2. Such comparisons can be done based on the likelihood function

Lx(θ) := f(x|θ), θ ∈ Θ.
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Figure 3: Likelihood and log-likelihood functions in the opinion poll example. The observed
data is X = 200.

Note that Lx(θ) is a function over the variable θ taking values in the set Θ.
For all technical purposes, one can work with Lx(θ) in the log-scale. That is, define the

log-likelihood function
`x(θ) = logLx(θ) = log f(x | θ).

Log-scale comparisons between theories are then done by differences `x(θ1)− `x(θ2).
Example (Opinion Poll, Contd). For the opinion poll example with the statistical model
{Binomial(n, p) : p ∈ [0.1]}, the likelihood function in the parameter p is given by

Lx(p) =

(
n

x

)
px(1− p)n−x, p ∈ [0, 1]

and the log-likelihood function is

`x(p) = logLx(p) = log

(
n

x

)
+ x log p+ (n− x) log(1− p), p ∈ [0, 1]

Note that the first term on the right hand side does not involve the function argument p. So
we can write

`x(p) = const + x log p+ (n− x) log(1− p),

not caring about the exact value of this additive constant. Indeed, the constant disappears
when we look at differences `x(p1)− `x(p2).

For data X = 200 the theories p = 0.25, p = 0.50 and p = 0.75 receive likelihood scores
6.45×10−14, 1.54×10−6 and 1.25×10−61. Figure 3 shows the likelihood function L200(p) and
the log-likelihood function `200(p) over the grid p ∈ {0.00, 0.01, · · · , 1.00}. These functions
indicate that theories with p close to 0.4 fare well in explaining the data X = 200. The
theory p = 0.4 explains the data nearly 1080 times better than the theory p = 0.8.
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Figure 4: TC counts between 1908 and 2007 and the corresponding log-likelihood function
shown as a contour.

Example (TC counts, Contd.). For the statistical model we discussed before, the log-
likelihood function is given by:

`x(α, β) = const−
100∑
t=1

(α + β(t− 1)) +
100∑
t=1

xt log(α + β(t− 1)).

Figure 4 shows the observed annual TC counts between 1908 and 2007 (on the left superim-
posed on f(x|7, 0.05)). A contour plot of the the log-likelihood function over (α, β) is shown
on the right. Positive slope values (β > 0) fare better in explaining the data than negative
slopes.

A Word of Caution

The likelihood function gives a numerical comparison of the postulated theories once data
X = x is observed. But be clear on what Lx(θ1)/Lx(θ2) = 2 means. It does NOT mean that
given the observed data, theory θ1 is twice more likely than theory θ1. We don’t yet have a
platform for discussing likeliness or relative plausibility of theories. Formalizing this concept
is the focus of statistical inference.
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