
STA 114: Statistics

Notes 8. ML Confidence Intervals based on Normal Approximation

Coverage probability calculations for non-normal models

Constructing an ML interval is conceptually simple. You can do it the moment you have
got a handle on the likelihood function and chosen a threshold. But calculating the coverage
probabilities, and the confidence coefficient of such an interval procedure can be a challenge.
For the normal pdf model X1, · · · , Xn

IID∼ Normal(µ, σ2), the confidence coefficient of an ML
interval for µ can be calculated exactly, irrespective of whether σ is a fixed variable, or
an unknown model parameter. For model consisting of non-normal pdfs/pmfs, such exact
calculations are rarely possible. But, astoundingly, a large number of such models can be
well approximated by a normal model. This is what we shall explore today.

Asymptotic Normality of the MLE

We shall consider models of the form X1, · · · , Xn
IID∼ g(xi|θ), θ ∈ Θ, where θ is a scalar. Let

˙̀
x(θ) and ῭

x(θ) denote the first and second order derivatives (w.r.t. θ) of the log-likelihood
function `x(θ).

Assume a unique MLE θ̂MLE(x) exists. For a fixed θ0 inside Θ, a one term Taylor expansion
of ˙̀

x(θ0) around θ̂MLE(x), gives

˙̀
x(θ0) = ˙̀

x(θ̂MLE(x)) + (θ0 − θ̂MLE(x))῭
x(θ̂MLE(x)) +R(x)

where R(x) is the remainder term. Now, ˙̀
x(θ̂MLE(x)) = 0 and ῭

x(θ̂MLE(x)) = −Ix, so we can
rearrange the above equation to write

√
Ix(θ̂MLE(x)− θ0) =

˙̀
x(θ0)√
Ix

+ R̃(x)

for a new remainder term R̃(x) = −R(x)/
√
Ix.

The desired result. We will argue that when Xi
IID∼ g(xi|θ0),

√
IX(θ̂MLE(X)− θ0) is approx-

imately a Normal(0, 1) random variable, for all large n. From the above equality, it suffices
to argue that ˙̀

X(θ0)/
√
IX is approximately Normal(0, 1) and that R̃(X) is negligible.

The crux of approximate normality. Note that

˙̀
X(θ0) =

n∑
i=1

ṡθ0(Xi)
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where sθ(xi) = ∂
∂θ

log g(xi|θ). Therefore, ˙̀
X(θ0) is the sum of n IID random variables

sθ0(Xi), and hence by CLT, is approximately Normal(na, nb2) where a = E[X1|θ0]sθ0(X1) and

b2 = Var[X1|θ0]sθ0(X1). This crucial observation leads to ˙̀
X(θ0)/

√
IX being approximately

Normal(0, 1) provided we can show a = 0 and b2 ≈ IX/n.

Proving a = 0. Note that for any θ,

sθ(xi) =
∂
∂θ
g(xi|θ)
g(xi|θ)

, and hence, E[X1|θ]sθ(X1) =

∫
sθ(x1)g(x1|θ)dx1 =

∫
∂

∂θ
g(x1|θ)dx1.

Under certain regularity conditions of the pdfs (or pmfs) g(xi|θ), the integration and differ-
entiation operations can be interchanged in the last term above. This gives,

E[X1|θ]sθ(X1) =
∂

∂θ

∫
g(x1|θ)dx1 =

∂

∂θ
{1} = 0.

Because this identity holds for every θ, we conclude a = E[X1|θ0]sθ0(X1) = 0.

Proving b2 ≈ IX/n and the rest of the argument. Again for any θ, because E[X1|θ]sθ(X1) =

0, we have Var[X1|θ]sθ(X1) = E[X1|θ]s
2
θ(X1). This quantity is called the (single observation)

Fisher information at θ of the model under consideration, and is denoted IF1 (θ). An inter-
esting fact is IF1 (θ) = −E[X1|θ]

∂2

∂θ2
log g(X1|θ). This holds because

∂2

∂θ2
log g(xi|θ) =

∂2

∂θ2
g(xi|θ)

g(xi|θ)
−

{
∂
∂θ
g(xi|θ)
g(xi|θ)

}2

=
∂2

∂θ2
g(xi|θ)

g(xi|θ)
− s2θ(Xi)

and hence

−E[X1|θ]
∂2

∂θ2
log g(X1|θ) = E[X1|θ]s

2
θ(X1)−

∫
∂2

∂θ2
g(x1|θ)dx1 = IF1 (θ)− 0,

again, by interchanging differentiation and integration. This identity gives the following
approximation via SLLN when Xi

IID∼ g(xi|θ),

− 1

n
῭
X(θ) = − 1

n

n∑
i=1

∂2

∂θ2
g(Xi|θ) ≈ −E[X1|θ]

∂2

∂θ2
log g(X1|θ) = IF1 (θ).

Now under some regularity conditions on the pdfs (pmfs) g(xi|θ), for large n, θ̂MLE(X) ≈
θ0 when Xi

IID∼ g(xi|θ0), which implies

IX
n

= − 1

n
῭
X(θ̂MLE(X)) ≈ − 1

n
῭
X(θ0) ≈ IF1 (θ0) = Var[X1|θ0]s

2
θ0

(X1) = b2.

This completes the argument for an approximate Normal(0, 1) distribution of ˙̀
X(θ0)/

√
IX .

The property θ̂MLE(X) ≈ θ0 also implies R(X) ≈ 0. This completes our “proof”!

2



The regularity conditions. The “regularity conditions” needed on the pdfs/pmfs are essen-
tially differentiability conditions (as functions of θ). In particular, it suffices that for any xi,
the map θ 7→ log g(xi|θ) is three times differentiable and that there is a function h(xi) such
that | ∂3

∂θ3
log g(xi|θ)| < h(xi) for all θ and E[X1|θ0]h(X1) < ∞. We also need that θ̂MLE(x)

is the unique maxima of `x(θ) for all x. These are known as the classic conditions (due to
Crámer). Better conditions were later provided by Le Cam who requires existence of a single
derivative in “quadratic mean”.

Confidence coefficient of ML intervals

Now consider an ML interval Bc(x) = θ̂MLE(x)∓ c/
√
Ix. The coverage probability at any θ0

inside Θ is:

γ(Bc; θ0) = P[X|θ0](θ0 ∈ θ̂MLE(X)∓ c/
√
IX)

= P[X|θ0]

(
−c ≤

√
IX(θ̂MLE(X)− θ0) ≤ c

)
≈ 2Φ(c)− 1,

by asymptotic normality of MLE. Therefore, the confidence coefficient of Bc is approximately
2Φ(c) − 1. And hence an approximately 100(1 − α)%-CI intervals is given by Bz(α)(x) =

θ̂MLE(x)∓ z(α)/
√
Ix where, as before, z(α) = Φ−1(1− α/2).
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