STA 114: STATISTICS

Notes 7. ML Confidence Intervals for Normal Model

ML interval for the normal model

We saw that for the model X; ~ Normal(u,0?), € (=00, 00), o fixed, the ML interval
B.(z) = & F co/+/n for pu has confidence coefficient 2¢(c) — 1. For the more general model,
where 02 € (0, 00) is also included as a model parameter, an (approximate) ML interval for
pis B.(x) = T F ¢s,/+/n. In this lecture, we shall calculate the confidence coefficients of
these intervals. By simple rearrangements (as we did for the known o case), the coverage of
B. at any (g, 02) can be expressed as:
X
(B (0, ) = Prsney (0 < 22 < c)

where sx denotes the random variable == 3" | (X; — X)2. Evaluating the probability on
the right would require knowing the distribution of the random variable T' = :;_7\/% when

X; ~ Normal(o, 02). To get there, we first need to describe the joint distribution of X and
s%. We will do this in several steps.

Orthogonal transformation of Normal variables

An n X n matrix

aix Qi -+ Aip

a21 Q22 -+ QAa2p
A=

Ap1 QAp2 - Apn

is called an orthogonal matrix if each row and each column of A has norm one, and the inner
product between any two rows or any two columns of A is zero. This implies that both A’A
and AA’ equal the n-dimensional identity matrix, where A’ denotes the transpose of A. In

other words A™1 = A’.
Consider the system of linear equations

Y1 = a11T1 + A12T2 + * - A1pTy

Yo = G21T1 + A20%2 + + - - A2, Ty

Yn = Ap1T1 + ApaZo + ++ - + App Ty

For an input « = (21, - , z,), write the output y = (y1,- - - , y,) given by the above system as
y = Ax (this can be correctly interpreted as A times x if you think of = and y as n-dimensional
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column vectors). For any y* = (y5, -+ ,y}) € (—00,00)" there is a unique solution to y* = Ax
in z, given by z* = A'y*, ie., o* = (2], - ,2) with 2} = ayy + - + aniyst. Also note

that if (x,y) is an input-output pair, i.e., y = Az, then > ©  y? => "  2?. The orthogonal
system A essentially rotates the input vector by a certain angle, without altering its norm.

RESULT 1. Let X = (Xy,---,X,,) with X; ~ Normal(0,1) and define Y = (Y3,---,Y,) as
Y = AX, the output of the above equations when the input is X, i.e., Y7 = a1 X1 + a12Xo +
-+ a1 X, etc. Then Y; ~ Normal(0, 1).

Proof. Let f(x) and g(y) denote the pdfs of X and Y. We know that

flz) = ) ln/2 exp <—— Zx ) : (X1, , ) € (—00,00)".

For any a = (a1, -+ ,a,) € (—00,00)" and for any r > 0 let B, (a) denote the sphere of radius
r with center at a, i.e., B,(a) contains all points z = (21, -+ , z,) such that > """ | (2 —a;)* <
r?. Then, for any z = (1, -+ ,x,) and any y = (Y1, , Yn),

. P(XeB@) gy PV € B
fo) = =B,y Y = I elB,. )

where vol(B,(a)) denotes the volume of B, (a).

Fixay* = (y7, -+ ,y;) and let 2 = A’y* be the unique solution of y* = Ax. Observe that
X € B,(z") if and only if Y € B,(y*). To see this, let X =(Xy,--+,X,) with X; = X; —
and Y = (Yi,---,Y,) with ¥; = Y; —y*. Then Y = AX and therefore,

X€B,(a%) &= Y X7 <1? <= Y V?<r? < Y eBy).
i=1 i=1
Also vol(B,(z*)) = vol(B,(y*)) because the two spheres have the same radius. Therefore
oo PYEB()) . PXeB @) o .
R T A TD I WD T e

1 *2 1" *2
(35 - s (1)

because Y. xi? = > " yi? since y* = Az*. But since y* is arbitrary, the pdf of Y is,

9(y) = 27) 1n/2 exp (-—Z%) (Y1, ,Yn) € (—00,00)",

i.e., Y; ~ Normal(0,1). O



RESULT 2. Let Xp,---, X,, ~ Normal(0,1). Then,
1. X ~ Normal(0, 1)
2 S (X = X ~ P 1)
3. X and Y7 (X; — X)? are independent.

Proof. 1t is possible to construct an nxn orthogonal matrix A whose first row is (\/Lﬁ, cee \/Lﬁ)
[in fact, given any n numbers by, --- , b, so that b2 + --- 4+ b2 = 1, it is possible to construct

an orthogonal matrix A with first row = (by,--- ,b,)]. Take X = (X3,---, X)) and Y = AX
in the sense of Result 1 above. Then Y = (Y,---,Y,) with ¥; ~ Normal(0, 1) and

Y24 4 Y2P=X24+ . 4+ X2
Now, V1 = Xi/vn+ -+ X,,/v/n=+/nX, and so
X =Y,/v/n ~ Normal(0,1/n)

because Y; ~ Normal(0,1). Also,

n

Z(Xi_X)2:iXi2_nX2:iY?_YlQ:Y;-F“'—i-YnQ.
=1 i=1

i=1

But Y3, -, Y, ~ Normal(0, 1), therefore Y +- -+ Y2 ~ x*(n—1) and so 37" (X; — X)? ~
x%(n —1). Also, Y;’s are independent of each other, therefore, X, which is a function of Y}
is independent of Y (X; — X)? which is a function of only Y3, -+, Y. O

RESULT 3. Let Xy,---, X, ~ Normal(y,5?). Then

1. X ~ Normal(y, %2)

(n—l)si

2. X ~ x*(n—1)

3. X and s% are independent.

Proof. Define Z; = (X; — p)/o, then Zy,--- , Z, ~ Normal(0, 1) and

_ _ —1)s? _
X=u+oZ, u:Z(Zi—Z)2

o2 :
=1

and therefore Result 2 implies Result 3. O
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Figure 1: Some t(k)-densities and the Normal(0, 1) density. As the degrees of freedom k — oo,
a t(k) density morphs into the Normal(0, 1) density.

The t-distributions

Let W and V be two independent random variables, with W ~ Normal(0, 1) and V' ~ x*(k).
Then T = —X— is said to have a t-distribution with k degrees of freedom, denoted T' ~ t(k).

VV/k

The pdf of t(k) is given by

k+1

1 2\ 2
r)=——— |1+ — , T € (—00,00).
= ey () oo
The t(k) pdf looks like a normal bell curve, but its tails decay at a slower rate. However,
the resemblance improves as k increases. In fact at any x, the t(k) pdf f(z) approaches the
Normal(0, 1) pdf (27)~'/2 exp(—?/2) when k — oo. See Figure 1. We will denote the t(k)
CDF by @ (x). Because t(k) is symmetric around 0, for any 7' ~ t(k),

P(—c <T <c¢)=Py(c) — Pp(—c) = Pp(c) — (1 — Pr(c)) = 2Pk (c) — 1.

Note that the normal CDF is a limiting case of ®; with k& — co. I might sometimes write
&, for ®. As there are z-tables for values of ® and its inverse, there are t-tables for &
and their inverses. In R, ®4(7) is calculated as pt(x, df = k) and its inverse ®;'(u) is
calculated as gnorm(u, df = k).

RESULT 4. Suppose X1, --- , X, ~ Normal(p, 0?), then T = %\% ~tn—1)




Proof. Indeed, T' = W where W = 7 ~ Normal(0,1) and V = %)X ~ x}(n—1)
with W and V' independent (Result 3). O

Confidence coefficient of B,

From the above result, the coverage (Bo; (10, 03)), at any (1o, 02) € (—00,00) X (0, 00), can
now be calculated as

X — o
Y(Be; (MOa‘To)) P[X|(p0,ag)] (—C < sx/ v < c) =2P,_4(c) — 1,

and therefore,
v(B.) =2®0,_4(c) — 1.

Confidence intervals

For a given a € (0,1), a 100(1 — a)%-CI B, is obtained by matching
20, 1(c)—1=1-a = c=9' (1 -a/2).

Note that unlike the known o? case, the choice of ¢ now depends on n Because the t(k)
distributions have tails that decay slower than the Normal(0, 1) tails, ®,*,(1 — a/2) is larger
than the corresponding ®!(1 — «/2) for the known variance model. In other words, the ML
95%-CI for p in the unknown variance model is wider than the ML 95%-CI for the known
variance model.

Notation

For any « € (0, 1), we will use the symbol z(a) to denote the quantity ®;'(1 — «a/2). The
limiting case, (1 — a/2) will be denoted by z(«). Therefore,

1. For the model X1, --- , X,, ~ Normal(u, 0?), j1 € (—00,00), 0% € (0,00), a 100(1 —a)%-
CI for p is T F z,-1(a)s./v/n,

2. For the model X1, - -+, X,, ~ Normal(u, 0?), 1 € (—00,00), 02 fixed, a 100(1 — a)%-CI
for pis = F z(a)o /y/n.

Keep in mind that z,(a) takes as argument « the reciprocal of the desired confidence coef-
ficient, i.e., for a 95%-CI, @ = 0.05 and we use z,_1(0.05). Table 1 gives values of z(«) for
some choices of k, including the limiting case of k = oo, and for confidence coefficients 90%

(=0.1), 95% (v = 0.05) and 99% (a = 0.01).



Confidence « ‘ zs(a)  zg(a) zr(a) zs(a) zo(a) z0(a) zs0(e)  z100(a)  2(c)
90% 0.10 202 194 189 186 1.83 1.81 1.68 1.66 1.64
95% 0.05 | 257 245 236 231 226  2.23 2.01 1.98  1.96
99% 0.01| 403 371 350 336 325 3.17 2.68 2.63  2.58

Table 1: z(a) values needed to construct 100(1 — «)%-CI.



