
STA 114: Statistics

Notes 7. ML Confidence Intervals for Normal Model

ML interval for the normal model

We saw that for the model Xi
IID∼ Normal(µ, σ2), µ ∈ (−∞,∞), σ fixed, the ML interval

Bc(x) = x̄∓ cσ/
√
n for µ has confidence coefficient 2φ(c)− 1. For the more general model,

where σ2 ∈ (0,∞) is also included as a model parameter, an (approximate) ML interval for
µ is Bc(x) = x̄ ∓ csx/

√
n. In this lecture, we shall calculate the confidence coefficients of

these intervals. By simple rearrangements (as we did for the known σ case), the coverage of
Bc at any (µ0, σ

2
0) can be expressed as:

γ(Bc; (µ0, σ
2
0)) = P[X|(µ0,σ2

0)]

(
−c ≤ X̄ − µ0

sX/
√
n
≤ c

)
where sX denotes the random variable 1

n−1

∑n
i=1(Xi − X̄)2. Evaluating the probability on

the right would require knowing the distribution of the random variable T = X̄−µ0
sX/
√
n

when

Xi
IID∼ Normal(µ0, σ

2
0). To get there, we first need to describe the joint distribution of X̄ and

s2
X . We will do this in several steps.

Orthogonal transformation of Normal variables

An n× n matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


is called an orthogonal matrix if each row and each column of A has norm one, and the inner
product between any two rows or any two columns of A is zero. This implies that both A′A
and AA′ equal the n-dimensional identity matrix, where A′ denotes the transpose of A. In
other words A−1 = A′.

Consider the system of linear equations

y1 = a11x1 + a12x2 + · · · a1nxn

y2 = a21x1 + a22x2 + · · · a2nxn
...

...

yn = an1x1 + an2x2 + · · ·+ annxn.

For an input x = (x1, · · · , xn), write the output y = (y1, · · · , yn) given by the above system as
y = Ax (this can be correctly interpreted as A times x if you think of x and y as n-dimensional
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column vectors). For any y∗ = (y∗1, · · · , y∗n) ∈ (−∞,∞)n there is a unique solution to y∗ = Ax
in x, given by x∗ = A′y∗, i.e., x∗ = (x∗1, · · · , x∗n) with x∗i = a1iy

∗
1 + · · · + aniy

∗
n. Also note

that if (x, y) is an input-output pair, i.e., y = Ax, then
∑n

i=1 y
2
i =

∑n
i=1 x

2
i . The orthogonal

system A essentially rotates the input vector by a certain angle, without altering its norm.

Result 1. Let X = (X1, · · · , Xn) with Xi
IID∼ Normal(0, 1) and define Y = (Y1, · · · , Yn) as

Y = AX, the output of the above equations when the input is X, i.e., Y1 = a11X1 +a12X2 +
· · ·+ a1nXn, etc. Then Yi

IID∼ Normal(0, 1).

Proof. Let f(x) and g(y) denote the pdfs of X and Y . We know that

f(x) =
1

(2π)n/2
exp

(
−1

2

n∑
i=1

x2
i

)
, x = (x1, · · · , xn) ∈ (−∞,∞)n.

For any a = (a1, · · · , an) ∈ (−∞,∞)n and for any r > 0 let Br(a) denote the sphere of radius
r with center at a, i.e., Br(a) contains all points z = (z1, · · · , zn) such that

∑n
i=1(zi− ai)2 ≤

r2. Then, for any x = (x1, · · · , xn) and any y = (y1, · · · , yn),

f(x) = lim
r→0

P (X ∈ Br(x))

vol(Br(x))
, g(y) = lim

r→0

P (Y ∈ Br(y))

vol(Br(y))

where vol(Br(a)) denotes the volume of Br(a).
Fix a y∗ = (y∗1, · · · , y∗n) and let x∗ = A′y∗ be the unique solution of y∗ = Ax. Observe that

X ∈ Br(x
∗) if and only if Y ∈ Br(y

∗). To see this, let X̂ = (X̂1, · · · , X̂n) with X̂i = Xi−x∗i ,
and Ŷ = (Y1, · · · , Yn) with Ŷi = Yi − y∗i . Then Ŷ = AX̂ and therefore,

X ∈ Br(x
∗) ⇐⇒

n∑
i=1

X̂2
i ≤ r2 ⇐⇒

n∑
i=1

Ŷ 2
i ≤ r2 ⇐⇒ Y ∈ Br(y

∗).

Also vol(Br(x
∗)) = vol(Br(y

∗)) because the two spheres have the same radius. Therefore

g(y∗) = lim
r→0

P (Y ∈ Br(y
∗))

vol(Br(y∗))
= lim

r→0

P (X ∈ Br(x
∗))

vol(Br(x∗))
= f(x∗)

=
1

(2π)n/2
exp

(
−1

2

n∑
i=1

x∗i
2

)
=

1

(2π)n/2
exp

(
−1

2

n∑
i=1

y∗i
2

)
,

because
∑n

i=1 x
∗
i

2 =
∑n

i=1 y
∗
i

2 since y∗ = Ax∗. But since y∗ is arbitrary, the pdf of Y is,

g(y) =
1

(2π)n/2
exp

(
−1

2

n∑
i=1

y2
i

)
, y = (y1, · · · , yn) ∈ (−∞,∞)n,

i.e., Yi
IID∼ Normal(0, 1).
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Result 2. Let X1, · · · , Xn
IID∼ Normal(0, 1). Then,

1. X̄ ∼ Normal(0, 1
n
)

2.
∑n

i=1(Xi − X̄)2 ∼ χ2(n− 1)

3. X̄ and
∑n

i=1(Xi − X̄)2 are independent.

Proof. It is possible to construct an n×n orthogonal matrix A whose first row is ( 1√
n
, · · · , 1√

n
)

[in fact, given any n numbers b1, · · · , bn so that b2
1 + · · ·+ b2

n = 1, it is possible to construct
an orthogonal matrix A with first row = (b1, · · · , bn)]. Take X = (X1, · · · , Xn) and Y = AX

in the sense of Result 1 above. Then Y = (Y1, · · · , Yn) with Yi
IID∼ Normal(0, 1) and

Y 2
1 + · · ·+ Y 2

n = X2
1 + · · ·+X2

n.

Now, Y1 = X1/
√
n+ · · ·+Xn/

√
n =
√
nX̄, and so

X̄ = Y1/
√
n ∼ Normal(0, 1/n)

because Y1 ∼ Normal(0, 1). Also,

n∑
i=1

(Xi − X̄)2 =
n∑
i=1

X2
i − nX̄2 =

n∑
i=1

Y 2
i − Y 2

1 = Y 2
2 + · · ·+ Y 2

n .

But Y2, · · · , Yn
IID∼ Normal(0, 1), therefore Y 2

2 + · · ·+Y 2
n ∼ χ2(n−1) and so

∑n
i=1(Xi− X̄)2 ∼

χ2(n − 1). Also, Yi’s are independent of each other, therefore, X̄, which is a function of Y1

is independent of
∑n

i=1(Xi − X̄)2 which is a function of only Y2, · · · , Yn.

Result 3. Let X1, · · · , Xn
IID∼ Normal(µ, σ2). Then

1. X̄ ∼ Normal(µ, σ
2

n
)

2.
(n−1)s2X

σ2 ∼ χ2(n− 1)

3. X̄ and s2
X are independent.

Proof. Define Zi = (Xi − µ)/σ, then Z1, · · · , Zn
IID∼ Normal(0, 1) and

X̄ = µ+ σZ̄,
(n− 1)s2

X

σ2
=

n∑
i=1

(Zi − Z̄)2

and therefore Result 2 implies Result 3.

3



-6 -4 -2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

x

D
en
si
ty

N(0,1)
t1
t5
t20

Figure 1: Some t(k)-densities and the Normal(0, 1) density. As the degrees of freedom k →∞,
a t(k) density morphs into the Normal(0, 1) density.

The t-distributions

Let W and V be two independent random variables, with W ∼ Normal(0, 1) and V ∼ χ2(k).
Then T = W√

V/k
is said to have a t-distribution with k degrees of freedom, denoted T ∼ t(k).

The pdf of t(k) is given by

f(x) =
1√

kB(1
2
, k

2
)

(
1 +

x2

k

)− k+1
2

, x ∈ (−∞,∞).

The t(k) pdf looks like a normal bell curve, but its tails decay at a slower rate. However,
the resemblance improves as k increases. In fact at any x, the t(k) pdf f(x) approaches the
Normal(0, 1) pdf (2π)−1/2 exp(−x2/2) when k → ∞. See Figure 1. We will denote the t(k)
CDF by Φk(x). Because t(k) is symmetric around 0, for any T ∼ t(k),

P (−c ≤ T ≤ c) = Φk(c)− Φk(−c) = Φk(c)− (1− Φk(c)) = 2Φk(c)− 1.

Note that the normal CDF is a limiting case of Φk with k → ∞. I might sometimes write
Φ∞ for Φ. As there are z-tables for values of Φ and its inverse, there are t-tables for Φk

and their inverses. In R, Φk(x) is calculated as pt(x, df = k) and its inverse Φ−1
k (u) is

calculated as qnorm(u, df = k).

Result 4. Suppose X1, · · · , Xn
IID∼ Normal(µ, σ2), then T = X̄−µ

sX/
√
n
∼ t(n− 1)
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Proof. Indeed, T = W√
V/(n−1)

where W = X̄−µ
σ/
√
n
∼ Normal(0, 1) and V =

(n−1)s2X
σ2 ∼ χ2(n− 1)

with W and V independent (Result 3).

Confidence coefficient of Bc

From the above result, the coverage γ(B0; (µ0, σ
2
0)), at any (µ0, σ

2
0) ∈ (−∞,∞)× (0,∞), can

now be calculated as

γ(Bc; (µ0, σ
2
0)) = P[X|(µ0,σ2

0)]

(
−c ≤ X̄ − µ0

sX/
√
n
≤ c

)
= 2Φn−1(c)− 1,

and therefore,
γ(Bc) = 2Φn−1(c)− 1.

Confidence intervals

For a given α ∈ (0, 1), a 100(1− α)%-CI Bc is obtained by matching

2Φn−1(c)− 1 = 1− α =⇒ c = Φ−1
n−1(1− α/2).

Note that unlike the known σ2 case, the choice of c now depends on n. Because the t(k)
distributions have tails that decay slower than the Normal(0, 1) tails, Φ−1

n−1(1−α/2) is larger
than the corresponding Φ−1(1−α/2) for the known variance model. In other words, the ML
95%-CI for µ in the unknown variance model is wider than the ML 95%-CI for the known
variance model.

Notation

For any α ∈ (0, 1), we will use the symbol zk(α) to denote the quantity Φ−1
k (1− α/2). The

limiting case, Φ−1(1− α/2) will be denoted by z(α). Therefore,

1. For the model X1, · · · , Xn
IID∼ Normal(µ, σ2), µ ∈ (−∞,∞), σ2 ∈ (0,∞), a 100(1−α)%-

CI for µ is x̄∓ zn−1(α)sx/
√
n,

2. For the model X1, · · · , Xn
IID∼ Normal(µ, σ2), µ ∈ (−∞,∞), σ2 fixed, a 100(1−α)%-CI

for µ is x̄∓ z(α)σ/
√
n.

Keep in mind that zn(α) takes as argument α the reciprocal of the desired confidence coef-
ficient, i.e., for a 95%-CI, α = 0.05 and we use zn−1(0.05). Table 1 gives values of zk(α) for
some choices of k, including the limiting case of k =∞, and for confidence coefficients 90%
(α = 0.1), 95% (α = 0.05) and 99% (α = 0.01).
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Confidence α z5(α) z6(α) z7(α) z8(α) z9(α) z10(α) z50(α) z100(α) z(α)

90% 0.10 2.02 1.94 1.89 1.86 1.83 1.81 1.68 1.66 1.64
95% 0.05 2.57 2.45 2.36 2.31 2.26 2.23 2.01 1.98 1.96
99% 0.01 4.03 3.71 3.50 3.36 3.25 3.17 2.68 2.63 2.58

Table 1: zk(α) values needed to construct 100(1− α)%-CI.
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