
STA 114: Statistics

Practice Problems

1. The area X (in mm2) of a microchip made by a machine is distributed according to
the pdf

f(x|θ) =

{
1− |x− θ| if x ∈ [θ − 1, θ + 1]

0 otherwise

where θ denotes the unknown “target value” as determined by the tuning of the ma-
chine.

(a) Based on the observation X = 3, make a plot of the likelihood function in θ.

(b) Does this observation support the theory that the machine is currently tuned for
a target area of 1? Justify.

(c) Identify the ML interval A0.1(x) = {θ : Lx(θ) ≥ 0.1 ×maxθ Lx(θ)} based on the
observation x = 3.

(d) What is the confidence coefficient of A0.1?

2. Let X1, · · · , Xn denote the first serve success rates of a tennis player from n matches.
Consider the model Xi

IID∼ g(xi|θ), θ ∈ (0,∞), where the pdf g(xi|θ) = θxθ−1
i for

0 < xi < 1 and is zero elsewhere.

(a) Find the expression for θ̂MLE(x) and Ix based on observations x = (x1, · · · , xn).

(b) Find a ML, asymptotically, 95%-CI for θ based on observations (0.93, 0.42, 0.88,
0.84, 0.82, 0.90, 0.99, 0.95, 0.70, 0.92).

(c) The quantity of interest is the average success rate η = E[X1|θ]X1 = θ
θ+1

. Give a
95%-CI for η and justify why it is a 95%-CI.

3. LetX1, X2, · · · , Xn denote the numbers of revolutions (in millions) until failure of n ball

bearings manufactured by a company. Consider the statistical model: Xi
IID∼ g(xi|µ, λ),

µ ∈ (0,∞) is the model parameter and λ is a fixed positive number; here g(xi|µ, λ) is
the inverse-Gaussian pdf:

g(xi|λ) =


(

λ
2πx3i

)1/2

exp
{
−λ(xi−µ)2

2µ2xi

}
if xi > 0

0 if xi ≤ 0
.

(a) Show that the log-likelihood function based on data x = (x1, x2, · · · , xn) can be
written as

`x(µ) = const.+
nλ

µ
− λ

2µ2

n∑
i=1

xi

1



(b) Show that µ̂MLE(x) = x̄ and Ix = nλ/x̄3.

(c) Give the ML, asymptotically 90%, 95% and 99%-CIs for µ (assume the pdf family
is sufficiently regular) for observed data x with

n = 23, x̄ = 72.26, x̄3 = 377306.1, sx = 37.49

and for λ = 232.

4. For the model X1, · · · , Xn
IID∼ Normal(µ, σ2), (µ, σ2) ∈ (−∞,∞)× (0,∞), is T1(x) = x1

a better estimator of µ than T2(x) = x̄? Explain.

5. Lactic acid measurements of a set of n cheese samples are modeled as X1, · · · , Xn
IID∼

Normal(µ, σ2), (µ, σ2) ∈ (−∞,∞)× (0,∞). Suppose, instead of focusing on µ, we are
interested in Xn+1, the lactic acid concentration of a hypothetical future sample from
the same cheese slab. We can describe Xn+1 ∼ Normal(µ, σ2), with same (µ, σ2) that
applies to the first n measurements, and, beyond sharing this common pdf, Xn+1 is
independent of X1, · · · , Xn.

(a) Based on observation x = (x1, · · · , xn) on the n actual measurements, X =
(X1, · · · , Xn), we can construct a “predictive interval” A(x) for the hypothetical
sample Xn+1 to quantify a range of values we expect Xn+1 to take (this is of more
importance to customers than an interval for µ). Consider one such interval,

Ac(x) = x̄∓ csx
√

1 + 1/n

Show that for any (µ0, σ
2
0),

P[X,Xn+1|(µ0,σ2
0)](Xn+1 ∈ Ac(X)) = 2Φn−1(c)− 1

and argue that Azn−1(α) has a 100(1− α)% guarantee of containing Xn+1.

[Hint: rearrange terms to express Xn+1 ∈ Ac(X) as −c ≤ Xn+1−X̄
sX
√

1+1/n
≤ c and then

argue that T = Xn+1−X̄
sX
√

1+1/n
∼ t(n − 1) when X1, · · · , Xn, Xn+1

IID∼ Normal(µ0, σ
2
0).

Toward this note that Xn+1 ∼ Normal(µ0, σ
2
0), X̄ ∼ Normal(µ0, σ

2/n) and (n −
1)s2

X/σ
2
0 ∼ χ2(n−1) and these are all independent of each other; use the definition

of the t-distribution.]

(b) Contrast this with the ML, 100(1 − α)% -CI for µ given by Bzn−1(α)(x) = x̄ ∓
zn−1(α)sx/

√
n. The width ofBzn−1(α)(x), relative to sx, collapses to 0 as n becomes

large. On the other hand, the width of Azn−1(α)(x), relative to sx, converges to
2z(α). Should this difference concern you? Explain.
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