

STA 114: STATISTICS

Practice Problems 3

1. For each question below RECORD which stated option is correct and GIVE a very brief explanation why.

(a) Consider the model $X_1, \dots, X_n \stackrel{\text{IID}}{\sim} \text{Normal}(\mu, \sigma^2)$, $\mu \in (-\infty, \infty)$, $\sigma \in (0, \infty)$. The p-value for testing $H_0 : \mu \leq 0$ vs $H_1 : \mu > 0$ is always exactly the half of the p-value for testing $H_0 : \mu = 0$ vs $H_1 : \mu \neq 0$.

A. TRUE B. FALSE

(b) If the p-value of observed data equals 0.03 based on a collection of level- α_0 tests $\{\delta_{\alpha_0} : 0 < \alpha_0 < 1\}$, then $\delta_{0.01}$ should reject H_0 .

A. TRUE B. FALSE

(c) For a vector of counts $\underline{N} = (N_1, N_2, N_3, N_4)$ modeled as $\underline{N} \sim \text{Multinomial}(n, p)$, $p = (p_1, p_2, p_3, p_4) \in \Delta_4$, the Pearson's chi-squared test statistic $Q(x)$ for testing $H_0 : p_1 = p_2 = p_3$ is approximately a χ^2_r random variable under H_0 for

A. $r = 1$ B. $r = 2$ C. $r = 3$

(d) In a three-way classification, 200 university students are simultaneously classified according to their college year (4 categories), major type (5 categories) and presidential candidate choice (3 categories). To test H_0 : "college year is independent of major type and presidential candidate choice", one could use a Pearson's chi-squared test statistic $Q(x)$, whose distribution under H_0 is χ^2_r with

A. $r = 59$ B. $r = 42$ C. $r = 24$ D. $r = 21$

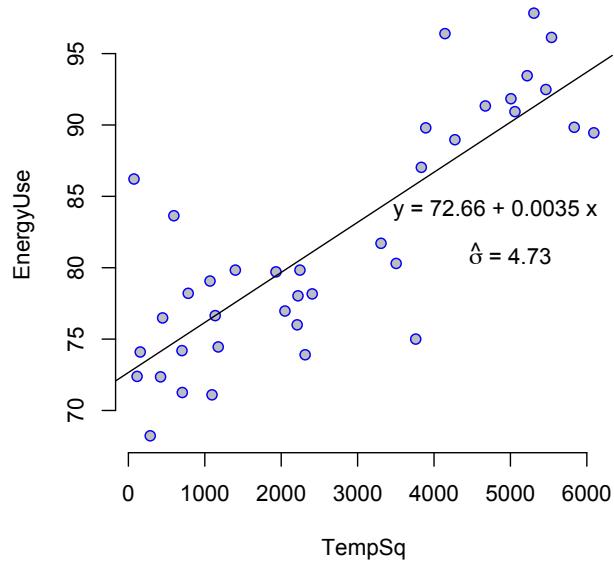
2. Consider data consisting of $n = 15$ observations X_1, X_2, \dots, X_n . Below are three possible statistical models for this data and a pair of hypotheses for each model. For each setting RECORD whether or not to reject H_0 according to the size-5% ML test if we observe $\bar{X} = 3.33$, $\sum_{i=1}^n (X_i - \bar{X})^2 = 55.73$.

(a) *Model.* $X_i \stackrel{\text{IID}}{\sim} \text{Poisson}(\mu)$ with $\mu > 0$ unknown.
Hypotheses. $H_0 : \mu \leq 2.5$ against $H_1 : \mu > 2.5$.

(b) *Model.* $X_i \stackrel{\text{IID}}{\sim} \text{Normal}(\mu, \sigma^2)$ with $-\infty < \mu < \infty$ unknown and $\sigma^2 = 2.5$.
Hypotheses. $H_0 : \mu \leq 2.5$ against $H_1 : \mu > 2.5$.

(c) *Model.* $X_i \stackrel{\text{IID}}{\sim} \text{Normal}(\mu, \sigma^2)$ with both $-\infty < \mu < \infty$ and $\sigma^2 > 0$ unknown.
Hypotheses. $H_0: \mu \leq 2.5$ against $H_1: \mu > 2.5$.

3. The figure below shows data on the square of mean temperature (in square degrees F) and energy consumption (in KWH) for a certain building in University of Minnesota campus, for 38 months in 1988-1992.



Consider the simple linear regression model $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, $\epsilon_i \stackrel{\text{IID}}{\sim} \text{Normal}(0, \sigma^2)$ where (X_i, Y_i) denotes the square mean temperature and energy consumption for month i with $i = 1, \dots, n = 38$. The least-squares line is shown in the plot along with the usual estimate $\hat{\sigma}$ of σ . For the observed data, the *standardized residuals* $e_i = (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)/\hat{\sigma}$, $i = 1, \dots, n$, (arranged from smallest to largest) equal

-2.105	-1.565	-1.245	-1.111	-0.993	-0.871	-0.848	-0.833	-0.821	-0.737
-0.685	-0.634	-0.415	-0.342	-0.302	-0.294	-0.245	-0.242	-0.176	0.113
0.146	0.259	0.269	0.281	0.325	0.373	0.434	0.458	0.478	0.515
0.556	0.605	0.734	1.113	1.519	1.592	1.729	2.965		

Perform a level-5% Pearson- χ^2 goodness-of-fit test of how well the simple linear model fits the observed data.