
STA 114: Statistics

Notes 13. Prediction

Consider data X modeled as X ∼ f(x|θ), θ ∈ Θ. Suppose we want to predict an unobserved
quantity X∗, which depends on the same parameter θ, based on an observation X = x.

Example (Hurricane counts). Based on count data X = (X1, · · · , Xn) from n consecutive
years, we might be interested in forecasting the number of TCs Xn+1 in the coming year. Here

X∗ = Xn+1 and a reasonable model is X1, · · · , Xn
IID∼ Poisson(µ), X∗ = Xn+1 ∼ Poisson(µ)

and X and X∗ are independent, where µ ∈ (0,∞) is an unknown model parameter.

Example (Hurricant counts (contd.)). In the same setting, we might be interested in
whether the next year’s count exceeds a certain cut-off mark, say 15. In this case the
variable of interest is the binary variable X∗, with X∗ = 1 when Xn+1 > 15 and X∗ = 0
when Xn+1 ≤ 15, where Xn+1 is the count for the coming year. Borrowing from the de-

scription of X and Xn+1 above, we can describe X and X∗ as: X1, · · · , Xn
IID∼ Poisson(µ),

Xn+1 ∼ Bernoulli(p(µ)) where p(µ) =
∑

k>15 e
−µµk/k!, and X and X∗ are independent.

Example (Food expenditure). Suppose we collect data from n Duke undergraduates on
their (average) weekly expenditure on food X1, · · · , Xn. We might be interested in predicting
X∗ = Xn+1, the (average) amount a (hypothetical) future student is likely to pay on food per

week. We can model X1, · · · , Xn, Xn+1
IID∼ Normal(µ, σ2), with (µ, σ2) ∈ (−∞,∞) × (0,∞)

as unknown model parameters.

Example (Food expenditure (contd.)). We might also be interested in predicting the differ-
ence X∗ = Xn+1−Xn+2 in expenditures for two (hypothetical) future students. If we model

X1, · · · , Xn, Xn+1, Xn+2
IID∼ Normal(µ, σ2), then we have the following model on X and X∗:

X1, · · · , Xn ∼ Normal(µ, σ2), X∗ ∼ Normal(0, 2σ2), X and X∗ independent.

From the above examples it is clear that we are discussing prediction of a variable X∗, given
observation on data X in the following context: X ∼ f(x|θ), X∗ ∼ f ∗(x∗|θ), θ ∈ Θ∗, for
some collections of pdfs/pmfs f(x|θ) and f ∗(x∗|θ) indexed by a common parameter θ ∈ Θ.
Also note that in all of the above examples the model parameters are not real, physical
quantities that we could measure if we had more resources (unlike the opinion poll example
where the parameter is the actual proportion of supporters, a measurable quantity). For
such examples, prediction might be a more useful data analysis task than inference on the
model parameters. Below we discussion classical and Bayesian approaches to prediction.
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Classical approach

The main vehicle of prediction in classical statistics is the so-called plug-in approach. Sup-
pose we obtain an estimate θ̂(x) of θ from observation X = x (based on ML or other con-
siderations). Then the predictive description of X∗ given X = x is the pdf/pmf f̂ ∗(x∗|x) =
f ∗(x∗|θ̂(x)). Although this is a reasonable approach, there is one difficulty. We essentially
took the point summary θ̂(x) to capture all uncertainty about θ. This goes against our
intuition of uncertainty associated with statistical modeling that encouraged us to consider
interval summaries over point summaries.

This difficulty can be explored formally as follows. Consider the modelX1, · · · , Xn, Xn+1
IID∼

Normal(µ, σ2), µ ∈ (−∞,∞), σ2 fixed and X∗ = Xn+1. The ML plug-in predictive distri-
bution X∗ given X = x is Normal(x̄, σ2). A 95% central interval for this distribution is
x̄ ∓ 1.96σ/

√
n. But does this interval guarantee a 95% coverage of capturing X∗? [Recall

Practice Problem #5]. We expect the answer to be “no” because we are not accounting for
the uncertainty about µ estimated by µ̂MLE(x) = x̄. By simple calculations:

P[X,X∗|µ](X
∗ ∈ X̄ ∓ 1.96σ) = P[X,X∗|µ](X

∗ − X̄ ∈ ∓1.96σ) = P[Z|µ]

(
Z ∈ ∓ 1.96√

1 + 1/n

)

where Z = X∗−X̄
σ
√

1+1/n
. Now, by our model on X and X∗, for any µ, X∗ ∼ Normal(µ, σ2),

X̄ ∼ Normal(µ, σ2/n) and they are independent. So for any µ, X∗−X̄ ∼ Normal(0, σ2+σ2/n)
and hence Z ∼ Normal(0, 1). So the above coverage probability is 2Φ(1.96/

√
1 + 1/n) − 1.

For n = 5, this equals 93% rather than the touted coverage of 95%.
For the normal models (both known and unknown σ2), this loss of coverage is easy to fix.

In this above example, to get 95% coverage probability, we should use x̄∓ 1.96σ
√

1 + 1/n.

More generally, the predictive interval x̄∓ z(α)σ
√

1 + 1/n yields a 100(1−α)% coverage of

X∗. For the unknown σ2 model, the same holds for the interval x̄∓ zn−1(α)sx
√

1 + 1/n.
However, such fixes are not generally available for non-normal models. Calculating the

coverage can be a challenging task. Even normal approximations to the MLE may not salvage
the situation, because we also need to account for X∗. However, simulations techniques (as
we saw in labs) can be used to approximate coverage probabilities of a given predictive
interval procedure.

Bayesian approach

Prediction under a Bayesian formulation is conceptually very straightforward. Suppose we
have X ∼ f(x|θ), X∗ ∼ f ∗(x∗|θ), X and X∗ independent, and θ ∈ Θ is assigned a prior
ξ(θ). Then we can talk about the joint plausibility scores of the triplet (X,X∗, θ) via the
pdf/pmf/...

g(x, x∗, θ) = f(x|θ)f ∗(x∗|θ)ξ(θ), x ∈ S, x∗ ∈ S∗, θ ∈ Θ.

To see why this is the case, assume for the moment that the spaces S, S∗ and Θ are all
discrete so that f(x|θ), f ∗(x∗|θ) and ξ(θ) are all pmfs. Then,

g(x, x∗, θ) = P (X = x,X∗ = x∗|θ)ξ(θ) = P (X = x|θ)P (X∗ = x∗|θ)ξ(θ) = f(x|θ)f ∗(x∗|θ)ξ(θ)
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where the middle inequality follows because X,X∗ are independent given θ.
From the joint plausibility scores on (X,X∗, θ) we can extract conditional joint scores of

(X∗, θ) given X = x by the pdf/pmf/...

h∗(x∗, θ|x) = f(x∗|θ)ξ(θ|x), x∗ ∈ S∗, θ ∈ Θ.

To see this, again working with pmfs, argue that

h∗(x∗, θ|x) =
g(x, x∗, θ)∑

θ̃∈Θ

∑
x̃∗∈S∗ g(x, x̃∗, θ̃)

=
f(x|θ)f ∗(x∗|θ)ξ(θ)∑

θ̃∈Θ{
∑

x̃∗∈S∗ f
∗(x∗|θ̃)}f(x|θ̃)ξ(θ̃)

=
f ∗(x∗|θ)f(x|θ)ξ(θ)∑

θ̃∈Θ f(x|θ̃)ξ(θ̃)
= f ∗(x∗|θ)ξ(θ|x)

From this we get the conditional plausibility scores of X∗ given X = x by the pdf/pmf/...

f ∗(x∗|x) =

{ ∑
θ∈Θ f

∗(x∗|θ)ξ(θ|x) if ξ(θ|x) is a pmf∫
Θ
f ∗(x∗|θ)ξ(θ|x)dθ if ξ(θ|x) is a pdf

Intuitively, the predictive distribution f ∗(x∗|x) stands for the following. If we knew θ,
we would use f ∗(x∗|θ) to describe X∗. But we do not know θ and our understanding of it is
represented by the posterior pdf ξ(θ|x) given X = x. So we must combine our representation
of X∗ given θ with our representation of θ to get f ∗(x∗|x) =

∫
Θ
f ∗(x∗|θ)ξ(θ|x)dθ.

Note that the plug-in approach follows a similar logic, but instead of averaging unknown
values of θ, it just plugs-in the estimate θ̂(x) for θ to produce f̂ ∗(x∗|x) = f ∗(x∗|θ̂(x)).

Posterior predictive distribution of future observation for conjugate models

Consider dataX and future observationX∗ modeled asX ∼ Binomial(n, p), X∗ ∼ Binomial(m, p),
X and X∗ are independent, p ∈ [0, 1] assigned a Beta(a, b) prior pdf. Then,

f ∗(x∗|x) =

∫ 1

0

(
m

x∗

)
px
∗
(1− p)m−x∗ξ(p|x)dp, x∗ ∈ {0, 1, · · · ,m}.

But ξ(p|x) = Beta(a′ = a+ x, b′ = b+ n− x) and so, for any x∗ ∈ {0, · · · ,m},

f ∗(x∗|x) =

∫ 1

0

(
m

x∗

)
px
∗
(1− p)m−x∗ p

a′−1(1− p)b′−1

B(a′, b′)
dp

=

(
m

x∗

)
1

B(a′, b′)

∫ 1

0

pa
′+x∗−1(1− p)b′+m−x∗−1dp

=

(
m

x∗

)
B(a′ + x∗, b′ +m− x∗)

B(a′, b′)
.

Here we could evaluate the integral
∫

Θ
f ∗(x∗|θ)ξ(θ|x)dθ because it boils down to evaluating

the normalizing constant of a function that is a constant multiple of a beta density. Similar
calculations will be possible for any conjugate model (see homework).
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Example (Opinion poll). Suppose a researcher, having found X = 200 supporters of a
policy among n = 500 students she surveyed, wants to predict the number of supporters X∗

in another group of m = 10 students. Suppose p, the actual proportion of supporters in the
college is assigned a Uniform(0, 1) prior. Then from the calculations above, f ∗(x∗|x = 200) =(

10
x∗

)
B(201 + x∗, 301 + 10− x∗)/B(201, 301) for x∗ = 0, · · · , 10 (and zero otherwise). A plot

of this is shown below.
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Special calculations for normal models

The same applies to a normal conjugate model, and we can carry out the integration∫
f ∗(x∗|θ)ξ(θ|x) analytically (with θ = µ of θ = (µ, σ2) and appropriate conjugate prior

pdf ξ(θ)) to derive the expression for f ∗(x∗|x) when X∗ = Xn+1 is a future observation.
Unsurprisingly, this predictive distribution has a recognizable form. Details are given below.

First, consider data X = (X1, · · · , Xn) and future variable X∗ = Xn+1 modeled as

X1, · · · , Xn, Xn+1
IID∼ Normal(µ, σ2), µ ∈ (−∞,∞), σ2 fixed and suppose ξ(µ) = Normal(a, b2).

Then ξ(µ|x) = Normal(a′, b′2) where a′ = (nb2x̄+ σ2a)/(nb2 + σ2) and b′2 = b2σ2/(nb2 + σ2).
Then f ∗(x∗|x) = Normal(a′, b′2 + σ2). This follows from the result below. So a 95% central
predictive credible interval for X∗ is a′ ∓ 1.96

√
b′2 + σ2.

Result 1. If W ∼ Normal(a, b2) and U |(W = w) ∼ Normal(w, c2) then U ∼ Normal(a, b2 +
c2).

Proof. From the second property, it’s OK to write U = W + Z where Z ∼ Normal(0, c2)
and is independent of W . But two independent normals add to a normal with means and
variances added, therefore U = W + Z ∼ Normal(a+ 0, b2 + c2) = Normal(a, b2 + c2).
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Now consider the case where σ2 is unknown and ξ(µ, σ2) = Nχ−2(m, k, r, s). Then
ξ(µ, σ2|x) = Nχ−2(m′, k′, r′, s′) with the usual update formulas. So f ∗(x∗|x) equals the
distribution of a t(r′) random variable scaled by

√
s′(1 + 1/k′) and shifted by m′. More

precisely,
X∗ −m′√
s′(1 + 1/k′)

∣∣∣∣(X = x) ∼ t(r′).

This follows from the result below. Hence a 100(1− α)% central predictive credible interval
for X∗ is m′ ∓ zr′(α)

√
s′(1 + 1/k′).

Result 2. If (W,V ) ∼ Nχ−2(m, k, r, s) and U |(W = w, V = v) ∼ Normal(w, bv) then
T = U−m√

s(b+1/k)
∼ t(r).

Proof. We know rs/V ∼ χ2(r). Think about the description of (U,W ) given V = v. This
is precisely, U |(W = w) ∼ Normal(w, bv) and W ∼ Normal(m, v/k), therefore, by the result
above, still under the condition V = v, U ∼ Normal(m, v(b+ 1/k)) = Normal(m, v/k̃) where
k̃ = 1/(b + 1/k). But this description of U given V = v, coupled with the description
rs/V ∼ χ2(r) means that (U, V ) must have Nχ−2(m, k̃, r, s) distribution. From properties
of this distribution we know, T = U−m√

s/k̃
∼ t(r), which yields the desired result.

Simulating from f ∗(x∗|x)

Even when f ∗(x∗|x) is not available in closed form, one might obtain summaries of this
pdf/pmf by generating random samples from it. For example, if we have access to a sample
of draws θ1, · · · , θM from the posterior ξ(θ|x), then we can generate a sample of draws
x∗1, · · · , x∗M from f ∗(x∗|x) simply by drawing x∗i ∼ f ∗(x∗|θ = θi). The justification behind this
comes from the identity that the joint pdf/pmf/.. of (X∗, θ) givenX = x is f ∗(x∗|θ)ξ(θ|x) and
so drawing a θi ∼ ξ(θ|x) and then drawing a x∗i ∼ f ∗(x∗|θ = θi) is precisely same as making a
draw (x∗, θ) from the joint pdf/pmf/... Once we have the joint samples (x∗1, θ1), · · · , (x∗M , θM)
and ignore the θi’s, the draws x∗i must precisely be draws from the marginal f ∗(x∗|x).

Example (Opinion poll (contd.)). For the opinion poll example described above, we could
get draws x∗1, · · · , x∗M from f ∗(x∗|x) as follows:

n <- 500; x <- 200; ## data

a <- 1; b <- 1; ## prior Be(a = 1, b = 1)

a.x <- x + a; b.x <- n - x + b; ## posterior Be(a.x, b.x)

M <- 1000 ## number of samples to draw

p.samp <- rbeta(M, a.x, b.x) ## draw p from posterior

x.star <- rbinom(M, 10, p.samp) ## draw x.star[i] ~ Bin(10, p.samp[i])

hist(x.star, freq = FALSE, col = "gray", border = "white", breaks = 0:11 - 0.5)
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