
STA 114: Statistics

Notes 18. 2-sided & 1-sided ML tests, Fixed level testing, P-values

Two-sided ML tests for normal models

In last lecture we saw that for X1, · · · , Xn
IID∼ Normal(µ, σ2), σ2 fixed, a size α ML test for

H0 : µ = µ0 against H1 : µ ̸= µ0 is given by

reject H0 if and only if µ0 ̸∈ x̄∓ z(α)
σ√
n
, i.e.,

|x̄− µ0|
σ/

√
n

> z(α).

What about a size α ML test for the same hypotheses when σ is not assumed known? We
need a bit of a care here, because H0 is no longer a point null! It contains all (µ, σ2) for
which µ = µ0 and σ2 > 0 is arbitrary. And so size calculation actually requires taking a
maximum of the power function over a non-singleton set.

However, it is not difficult to derive the form of an ML test. This is because an ML test
rejects H0 if and only if L∗

x(µ0) ≥ kmaxµ∈(−∞,∞) L
∗
x(µ) where L∗

x(µ) = maxσ2>0 Lx(µ, σ
2) is

the profile likelihood in µ. So the ML test rejects H0 if and only if µ0 does not belong to
the corresponding profile ML interval for µ. We know the form of these intervals: Bc(x) =
x̄ ∓ csx/

√
n with a flat coverage 2Φn−1(c) − 1 at every (µ, σ2). Therefore an ML test is of

the form:

reject H0 if and only if µ0 ̸∈ x̄∓ c
sx√
n

i.e.,
|x̄− µ0|
sx/

√
n

> c

with size = maxσ2>0{1 − γ((µ0, σ
2);Bc)} = 2{1 − Φn−1(c)}. Again, with c = zn−1(α), the

corresponding ML test has size α. In summary, for X1, · · · , Xn
IID∼ Normal(µ, σ2), (µ, σ2)

unknown, and size α ML test for H0 : µ = µ0 against H1 : µ ̸= µ0 is given by:

reject H0 if and only if µ0 ̸∈ x̄∓ zn−1(α)
sx√
n

i.e.,
|x̄− µ0|
sx/

√
n

> zn−1(α)

By a similar argument we can say that for X1, · · · , Xn
IID∼ Normal(µ1, σ

2), Y1, · · · , Ym
IID∼

Normal(µ2, σ
2), a size α ML test for H0 : µ1 − µ2 = η0 against H1 : µ1 − µ2 ̸= η0 is given by

reject H0 if and only if η0 ̸∈ (x̄− ȳ)∓ zn+m−w(α)

√(
1

n
+

1

m

)
(n− 1)s2x + (m− 1)s2y

n+m− 2

i.e.,
|(x̄− ȳ)− η0|√(

1
n
+ 1

m

) (n−1)s2x+(m−1)s2y
n+m−2

> zn+m−2(α)
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One-sided ML tests

In the drug study example, suppose a currently available soporific drug is known to give an
hour’s of extra sleep on average. Then it is more reasonable to test whether, with the new
drug, we have H0 : µ ≤ 1 against H1 : µ > 1. Such hypotheses are called one-sided, as they
only care about one side of an existing standard, rather than exact match with the current
standard. To distinguish from this case, the hypotheses H0 : µ = 1 against H1 : µ ̸= 1 are
called two-sided.

Deriving a size α ML test for a pair of one-sided hypotheses is usually easy if we know
the size α ML tests for the two sided version. To set ideas, let’s look at X1, · · · , Xn

IID∼
Normal(µ, σ2), where σ is fixed and we’re interested in H0 : µ ≤ µ0 against H1 : µ > µ1. We
know the ML intervals of µ are of the form x̄∓ cσ/

√
n. The corresponding ML test rejects

H0 when no µ ≤ µ0 is within the ML interval, which happens if and only if µ0 < x̄− cσ/
√
n.

Call this test δc(x), we’ll calculate its size. For any µ ≤ µ0,

π(µ; δc) = P[X|µ](µ0 < X̄ − cσ/
√
n) ≤ P[X|µ](µ < X̄ − cσ/

√
n) = 1− Φ(c).

Therefore, α(δc) = maxµ≤µ0 π(µ; δc) = 1−Φ(c). Because c ≥ 0, the size is never larger than
1/2. So, for any α ∈ (0, 1/2] a size α ML test for H0 : µ ≤ µ0 against H1 : µ > µ0 is given by

reject H0 if and only if µ0 < x̄− z(2α)
σ√
n
, i.e.,

x̄− µ0

σ/
√
n

> z(2α).

Note the use of z(2α) instead of z(α). No size α ML test exists for α > 1/2.
By symmetry, if we instead wanted to test H0 : µ ≥ µ0 against H1 : µ < µ0 then a size α

ML test (for α ≤ 1/2) would be given by

reject H0 if and only if µ0 > x̄+ z(2α)
σ√
n
, i.e.,

x̄− µ0

σ/
√
n

< −z(2α).

Similar arguments lead us to the results on Table 1.

Fixed level testing

Neyman and Pearson advocated the following approach to carry out testing. Once you have
set up the model and the hypotheses, choose a small α ∈ (0, 1), usually 1%, 5% or 10%. Next
choose a size α test with good power at the alternatives (usually an ML test if possible),
and then accept or reject H0 based on this test. If α was chosen 5% and the corresponding
test returns reject H0, then we say the null hypothesis is rejected at 5% significance level
[although a more correct description would be to add the phrase “based on ML tests”, etc.].
If the test returns accept H0, then we say we failed to reject the null hypothesis at 5% level
of significance.

The purpose of choosing α beforehand is that you’re stating upfront how conservative
you are about H0 (smaller α means more conservative). Choosing the level equal 5% means
that you’re willing to entertain an erroneous rejections of H0 at most in 5% cases.
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P-value

Consider the sleep study example where for X1, · · · , Xn
IID∼ Normal(µ, σ2) our observed data

had n = 10, x̄ = 2.33 and sx = 2. Suppose we want to test H0 : µ = 0 against µ ̸= 0 at
5% level. So we check whether 0 belongs to the interval x̄∓ zn−1(.05)sx/

√
n = [0.899, 3.761],

which it doesn’t, so we reject H0 at 5% significance level.
Now suppose our data instead had x̄ = 1.44, then this interval would be [0.009, 2.871]

and we would still reject H0 at 5%, but only marginally so. Although we make the same
decisions in either case, we do it with very different levels of assurance. In the second case
we were very close to taking the other decision (accept H0).

To reflect the strength of assurance in our decision, Fisher recommended reporting the
p-value, which is the smallest size α test which rejects H0 based on the observed data. The
smaller the p-value, the more assurance we have against H0.

To understand why Fisher recommended this, consider the following. Suppose you have
an infinite number of testers, each using a different size α (ML) test. Together, they cover
the whole range α ∈ (0, 1). The testers with smaller α are more conservative about H0, they
need to see more evidence against H0 to reject it. Next you show your recorded data to all
testers and each take a decision to reject/accept H0. The most liberal testers, those with α
very close to 1, would be quick to report reject H0 while the most conservative ones will stick
to accept H0. In between, there’s a point of switch, a value α0(x) so that all testers with
α ≥ α0(x) have rejected H0 and all testers with α < α0(x) have failed to reject H0. This
switch point is the p-value. The smaller the switch point, the more compelling the evidence
against H0 has been (converting more conservatives).

Keep in mind that the p-value is subjective to the collection of tests (with size covering
the whole range) you decided to use. This is why we’d talk about “p-value based on ML
tests” or “p-value based on median tests”, etc. (see HW9). Also remember that if you find
the ML based p-value to be 0.04, then the size 5% ML test would reject H0, as would any
other size α ML test with α ≥ 0.04. On the other hand, a size 1% ML test, and any other
size α ML test with α < 0.04 would accept H0.

In our sleep study example, to calculate p-value, we simply find the α for which 0 is just
on the border of the interval x̄ ∓ z(α)σ/

√
n. With x̄ = 2.33 we get p-value = 0.005, while

with x̄ = 1.44 we would have p-value = 0.049. So we have more compelling evidence against
H0 in the first case than in the second.

The border matching trick is universal – it applies to all tests listed on Table 1, including
the one-sided ones. For example, if we were testing H0 : µ ≤ 0 against H1 : µ > 0 with
n = 10, x̄ = 2.33 and sx = 2, then we would find α such that 2.33−z(2α)×2/

√
10 = 0 which

gives α = 0.0025. Hence ML test based p-value for these one sided hypotheses is 0.0025.
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