
STA 114: Statistics

Notes 16. Normal means: Bayesian approach

The two means problem with equal variance

As in the previous lecture, we consider two samples X = (X1, · · · , Xn), Y = (Y1, · · · , Ym)

modeled as X1, · · · , Xn
IID∼ Normal(µ1, σ

2), Y1, · · · , Ym
IID∼ Normal(µ2, σ

2), Xi’s and Yj’s are
independent, with model parameters µ1 ∈ (−∞,∞), µ2 ∈ (−∞,∞), σ2 ∈ (0,∞).

For a any one group, say the first group, we could assign its parameter (µ1, σ
2) a normal-

inverse-chi-square prior. However, we need to assign a prior on the triplet (µ1, µ2, σ
2). Here

we consider a trivariate extension of the Nχ−2 pdf.
For −∞ < m1,m2 < ∞, k1, k2, r, s > 0, we denote by NNχ−2(m1, k1,m2, k2, r, s) the

trivariate pdf:

f(w1, w2, v) = const.× v−(r+4)/2 exp

{
−rs+ k1(w1 −m1)

2 + k2(w2 −m2)
2

2v

}
defined over w1 ∈ (−∞,∞), w2 ∈ (−∞,∞) and v > 0. A couple of results would be handy.

Result 1. (W1,W2, V ) ∼ NNχ−2(m1, k1,m2, k2, r, s) if and only if

1. rs
V
∼ χ2(r)

2. Conditionally on V = v we have, W1 ∼ Normal(m1, v/k1), W2 ∼ Normal(m2, v/k2) and
W1 and W2 are independent.

Result 2. If (W1,W2, V ) ∼ NNχ−2(m1, k1,m2, k2, r, s) then for any constants a1, a2, we
must have (a1W1 + a2W2, V ) ∼ Nχ−2(a1m1 + a2m2, (a

2
1/k1 + a22/k2)

−1, r, s).

Some special cases of Result 2 are very useful:

• With a1 = 1 and a2 = 0 we get (W1, V ) ∼ Nχ−2(m1, k1, r, s). Similarly, (W2, V ) ∼
Nχ−2(m2, k2, r, s).

• With a1 = 1 and a2 = −1 we get (W1 −W2, V ) ∼ Nχ−2(m1 −m2, (
1
k1

+ 1
k2
)−1, r, s).
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Conjugacy

The trivariate NNχ−2 pdfs are particularly useful for our two groups normal model because
they forma conjugate family. If we choose ξ(µ1, µ2, σ

2) = NNχ−2(m1, k1,m2, k2, r, s) then
ξ(µ2, µ2, σ

2|x, y) = NNχ−2(m′
1, k

′
1,m

′
2, k

′
2, r

′, s′) where

m′
1 =

k1m1 + nx̄

k1 + n

k′
1 = k1 + n

m′
2 =

k2m2 +mȳ

k2 +m

k′
2 = k2 +m

r′ = r + n+m

s′ =
rs+ (n− 1)s2x + (m− 1)s2y +

k1n
k1+n

(x̄−m1)
2 + k2m

k2+m
(ȳ −m2)

2

r + n+m
.

This is fairly straightforward once we note

ℓx,y(µ1, µ2, σ
2) = const− n+m

2
log σ2 −

(n− 1)s2x + (m− 1)s2y + n(x̄− µ1)
2 +m(ȳ − µ2)

2

2σ2

log ξ(µ1, µ2, σ
2) = const− r + 4

2
log σ2 − rs+ k1(µ1 −m1)

2 + k2(µ2 −m2)
2

2σ2

and so,

log ξ(µ1, µ2, σ
2) = const− r + n+m+ r

2
log σ2

−
rs+ (n− 1)s2x + (m− 1)s2y

2σ2

− n(x̄− µ1)
2 + k1(µ1 −m1)

2

2σ2

− m(ȳ − µ2)
2 + k2(µ2 −m2)

2

2σ2

and use our old identities (handout 10/07 on conjugate models)

n(x̄− µ1)
2 + k1(µ1 −m1)

2 = (k1 + n)

(
µ1 −

k1m1 + nx̄

k1 + n

)2

+
k1n

k1 + n
(x̄−m1)

2

and, m(ȳ − µ2)
2 + k2(µ2 −m2)

2 = (k2 +m)

(
µ2 −

k2m2 +mȳ

k2 +m

)2

+
k2m

k2 +m
(ȳ −m2)

2

to recognize

log ξ(µ1, µ2, σ
2) = const− r′ + 4

2
log σ2 − r′s′ + k′

1(µ1 −m′
1)

2 + k′
2(µ2 −m′

2)
2

2σ2

with m′
1, k

′
1,m

′
2, k

′
2, r

′, s′ given as before.
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Reference prior

Another convenient choice of the prior distribution is ξ(µ1, µ2, σ
2) = const/σ2, the reference

prior for this model. Under this prior, the posterior ξ(µ1, µ2, σ
2) is indeed a NNχ−2(x̄, n, ȳ,m, n+

m− 2, (n− 1)s2x + (m− 1)s2y).

Inference on η = µ1 − µ2

With ξ(µ1, µ2, σ
2|x, y) = NNχ−2(m′

1, k
′
1,m

′
2, k

′
2, r

′, s′), Result 2 gives us the joint posterior
pdf of η = µ1 − µ2 and σ2 to be Nχ−2(m′

1 −m′
2, (1/k

′
1 + 1/k′

2)
−1, r′, s′). And therefore under

the posterior,
η − (m′

1 −m′
2)√

s′(1/k′
1 + 1/k′

2)
∼ t(r′).

This readily leads to 100(1− α)% central, posterior credible intervals for η of the form

(m′
1 −m′

2)∓ zr′(α)
√

s′(1/k′
1 + 1/k′

2).

An interesting thing happens when we use the reference prior ξ(µ1, µ2, σ
2) = const/σ2.

The above interval then equals

(x̄− ȳ)∓ zn+m−2(α)

√(
1

n
+

1

m

)
(n− 1)s2x + (m− 1)s2y

n+m− 2)

which is same as the 95% ML confidence interval for η (see notes 10/26).

Prediction of D∗ = X∗ − Y ∗

Now consider future variables X∗ = Xn+1 and Y ∗ = Yn+1 with our model suitably extended

to: X1, · · · , Xn, Xn+1
IID∼ Normal(µ1, σ

2), Y1, · · · , Ym, Ym+1
IID∼ Normal(µ2, σ

2), Xi’s and Yj’s
are independent. Clearly, conditional on (µ1, µ2, σ

2), D∗ = X∗−Y ∗ ∼ Normal(µ1−µ2, 2σ
2) =

Normal(η, 2σ2). This coupled with the posterior pdf of (η, σ2) as described above gives the
posterior predictive distribution of D∗ to be

D∗ − (m′
1 −m′

2)√
s′(2 + 1/k′

1 + 1/1k′
2)

∼ t(r′)

(see Result 2 from handout 10/19 on Prediction).
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