
STA 114: Statistics

Notes 15. Comparing two groups by their means

A large number of statistical applications boil down to comparing two populations through
their means. For example, suppose you have to decide which of the two sites, site A and site
B, is to be excavated in a copper mine. Your decision is to be based on copper specimens
X1, · · · , Xn from site A and Y1, · · · , Ym from site B. A reasonable data model is given by
Xi

IID∼ Normal(µ1, σ
2
1) and Yj

IID∼ Normal(µ2, σ
2
2) with Xi’s and Yj’s independent of each other.

Your decision on which site to excavate should depend on your assessment of the quantity
η = µ1 − µ2.

Similar tasks arise in clinical trials when comparing efficacy of a treatment against control,
in comparing income or achievement between two groups (split by gender or race or training
received, etc.), and so on. Note that, what we are interested in here is the difference between
the group specific expected values (means) of the outcome variable. Another interesting
variable to look at would be D = Ym+1 −Xn+1, the difference in the outcome value between
future (hypothetical) samples drawn from each group. However, we won’t address this today.

The two means problem with equal variance

In some applications it is reasonable to assume that the two groups have identical variability
around their respective means, i.e., the model simplifies to X1, · · · , Xn

IID∼ Normal(µ1, σ
2),

Y1, · · · , Ym
IID∼ Normal(µ2, σ

2), Xi’s and Yj’s are independent, with model parameters µ1 ∈
(−∞,∞), µ2 ∈ (−∞,∞), σ2 ∈ (0,∞).

We shall denote X = (X1, · · · , Xn), Y = (Y1, · · · , Yn), so, our data is (X, Y ) and an
observation on this data is denoted (x, y), with x = (x1, · · · , xn) and y = (y1, · · · , ym).
Because of the assumed independent between the Xi’s and Yj’s, the log-likelihood function
is given by

ℓx,y(µ1, µ2, σ
2) = log f(x, y | µ1, µ2, σ

2)

= log

[
e−

1
2
(x1−µ1)2

√
2πσ2

× · · · × e−
1
2
(xn−µ1)2

√
2πσ2

× e−
1
2
(y1−µ2)2

√
2πσ2

× · · · × e−
1
2
(ym−µ2)2

√
2πσ2

]

= const− n+m

2
log σ2 −

∑n
i=1(xi − µ1)

2

2σ2
−
∑m

j=1(yj − µ2)
2

2σ2

= const− n+m

2
log σ2 −

(n− 1)s2x + (m− 1)s2y + n(x̄− µ1)
2 +m(ȳ − µ2)

2

2σ2

To perform ML inference on η = µ1 − µ2, we first need to derive the profile likelihood
function of this quantity. Recall that this function is defined to be:

ℓ∗x,y(η) = max
(µ1,µ2,σ2) such that µ1−µ2=η

ℓx,y(µ1, µ2, σ
2), −∞ < η < ∞.
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That is, the profile likelihood for η equals ℓx,y(µ̂1, µ̂2, σ̂
2) for the (µ̂1, µ̂2, σ̂

2) that enjoys the
best support from observed data (x, y) among all (µ1, µ2, σ

2) satisfying µ1 −µ2 = η. To find
this point (µ̂1, µ̂2, σ̂

2) we must use a Lagrange multiplier approach.
Define

ℓ̃(µ1, µ2, σ
2, λ) = ℓx,y(µ1, µ2, σ

2) + λ(µ1 − µ2 − η)

over −∞ < µ1, µ2 < ∞, σ2 > 0 and −∞ < λ < ∞. Thenµ̂1, µ̂2, σ̂
2, for some λ̂ must be the

solutions of

0 =
∂

∂µ1

ℓ̃(µ1, µ2, σ
2, λ) =

n(x̄− µ1)

σ2
+ λ

0 =
∂

∂µ2

ℓ̃(µ1, µ2, σ
2, λ) =

m(ȳ − µ2)

σ2
− λ

0 =
∂

∂σ2
ℓ̃(µ1, µ2, σ

2, λ) = −n+m

2σ2
+

(n− 1)s2x + (m− 1)s2y + n(x̄− µ1)
2 +m(ȳ − µ2)

2

2σ4

0 =
∂

∂λ
ℓ̃(µ1, µ2, σ

2, λ) = µ1 − µ2 − η.

Some algebra shows that the solutions must equal

µ̂1 =
nx̄+mȳ

n+m
+

m

n+m
η

µ̂2 =
nx̄+mȳ

n+m
− n

n+m
η

σ̂2 =
(n− 1)s2x + (m− 1)s2y + n(x̄− µ̂1)

2 +m(ȳ − µ̂2)
2

n+m

=
(n− 1)s2x + (m− 1)s2y +

nm2

(n+m)2
(x̄− ȳ − η)2 + mn2

(n+m)2
(x̄− ȳ − η)2

n+m

=
(n− 1)s2x + (m− 1)s2y +

nm
n+m

(x̄− ȳ − η)2

n+m

and consequently,

ℓ∗x,y(η) = ℓx,y(µ̂1, µ̂2, σ̂
2)

= const− n+m

2
log σ̂2 − n+m

2

= const− n+m

2
log σ̂2

= const− n+m

2
log

(
1 +

nm
n+m

(x̄− ȳ − η)2

(n− 1)s2x + (m− 1)s2y

)
.

MLE and ML intervals of η

The MLE η̂MLE(x, y) of η is found by maximizing the profile likelihood function in η, which
is same as minimizing the log term on the above right. Because log is a monotone increasing
function, η̂MLE(x) then must minimize (x̄− ȳ − η)2 in η. This happens at

η̂MLE(x) = x̄− ȳ.
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For any positive constant c, the ML interval Bc(x, y) = {η : ℓ∗x,y(η) ≥ ℓ∗x,y(η̂MLE(x)) − c2/2}
must equal

Bc(x, y) =

{
η :

n+m

2
log

(
1 +

nm
n+m

(x̄− ȳ − η)2

(n− 1)s2x + (m− 1)s2y

)
≤ c2

}

= (x̄− ȳ)∓ c′

√(
1

n
+

1

m

)
(n− 1)s2x + (m− 1)s2y

n+m− 2

for some c′ > 0 that depends on c and n,m [more precisely, c′ =
√
(n+m− 2){exp( c2

n+m
)− 1} ≈

c for large n,m.].

ML confidence intervals for η

Let’s calculate the coverage probability of B(x, y) = (x̄− ȳ)∓ c
√(

1
n
+ 1

m

) (n−1)s2x+(m−1)s2y
n+m−2

at

a given point (µ1, µ2, σ
2) in the parameter space. This equals

γ(µ1, µ2, σ
2;B) = P[X,Y |µ1,µ2,σ2] (µ1 − µ2 ∈ B(X, Y ))

= P[X,Y |µ1,µ2,σ2]

−c ≤ (X̄ − µ1)− (Ȳ − µ2)√(
1
n
+ 1

m

) (n−1)s2X+(m−1)s2Y
n+m−2

≤ c


= 2Φn+m−2(c)− 1

because of the following result.

Result 1. Suppose X1, · · · , Xn
IID∼ Normal(µ1, σ

2), Y1, · · · , Ym
IID∼ Normal(µ2, σ

2), Xi’s and
Yj’s are independent. Then

T =
(X̄ − µ1)− (Ȳ − µ2)√(
1
n
+ 1

m

) (n−1)s2X+(m−1)s2Y
n+m−2

has a t(n+m− 2) distribution.

Proof. By our old results on normal data, X̄ ∼ Normal(µ1, σ
2/n),

(n−1)s2X
∼ χ2(n − 1), Ȳ ∼

Normal(µ2, σ
2/m),

(m−1)s2Y
σ2 ∼ χ2(m− 1) and these four random variables are independent of

each other. Hence U = (X̄−µ1)−(Ȳ−µ2)√
σ2( 1

n
+ 1

m)
∼ Normal(0, 1) and V =

(n−1)s2X+(m−1)s2Y
σ2 ∼ χ2(n+m−

2) with U and V independent [two independent chi-square variables add to form another
chi-square variable, with the parameters added]. Therefore, T = U/

√
V/(n+m− 2) ∼

t(n+m− 2).

From the above coverage calculation, it’s clear that the confidence coefficient of (x̄− ȳ)∓
c
√(

1
n
+ 1

m

) (n−1)s2x+(m−1)s2y
n+m−2

equals 2Φn+m−2(c) − 1. Hence we can form a 100(1 − α)% ML
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confidence interval for η by taking c = zn+m−2(α). So an ML 100(1− α)%-CI for η equals

(x̄− ȳ)∓ zn+m−2(α)

√(
1

n
+

1

m

)
(n− 1)s2x + (m− 1)s2y

n+m− 2

Unequal variances

In the more general setting, we should allow the two groups to have different variabilities
around their respective means, i.e., we cannot assume σ2

1 = σ2
2. So now our model is

X1, · · · , Xn
IID∼ Normal(µ1, σ

2
1), Y1, · · · , Ym

IID∼ Normal(µ2, σ
2
2), Xi’s and Yj’s are independent.

The model parameters are −∞ < µ1, µ2 < ∞, σ2
1, σ

2
2 > 0.

Rather surprisingly exact 100(1−α)% confidence intervals for η = µ1−µ2 are not known
for this problem. Instead, the following approximately 100(1 − α)% confidence interval
(known as Welch’s method) is widely popular:

(x̄− ȳ)∓ zr(x,y)(α)

√
s2x
n

+
s2y
m

where the degrees of freedom r(x, y) depends on data as

r(x, y) =

(
s2x
n
+

s2y
m

)2
s4x

n2(n−1)
+

s4y
m2(m−1)

.

Example (Soporific drug). In a sleep study, 10 patients (group 1) received a soporific drug
while 10 other patients (group 2) received a placebo. For every patient, their increase in
nightly sleep hours was recorded. Let Xi denote the measurements from group 1 and Yj’s

those from group 2. Model Xi
IID∼ Normal(µ1, σ

2
1), Yj

IID∼ Normal(µ2, σ
2
2), Xi’s and Yj’s are

independent. We are interested in confidence intervals for η = µ1−µ2 based on observations
(1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4) from group 1 and (0.7, -1.6, -0.2, -1.2, -0.1,
3.4, 3.7, 0.8, 0.0, 2.0) from group 2. For these observations n = m = 10, x̄ = 2.33, sx = 2,
ȳ = 0.75 and sy = 1.79.

If we assume σ2
1 = σ2

2, then a 95%-confidence interval for η is

1.58∓ z18(.05)× 0.85 = 1.58∓ 2.1× 0.85 = [−0.205, 3.365].

On the other hand, if we didn’t assume equality and the variance, then we first calculate
r(x, y) = 17.78 (fairly close to n+m− 2 = 18). Therefore a 95% (approximate) confidence
interval is

1.58∓ z17.78(0.05)× 0.85 = [−0.205, 3.365].

Confidence coefficient of Welch’s interval

Let Wα(x, y) denote Welch’s 100(1− α)% approximate confidence interval for η = µ1 − µ2.
Can we calculate its exact confidence coefficient? For any −∞ < µ1, µ2 < ∞, σ2

1, σ
2
2 > 0,

4



it’s coverage is (by definition):

γ(µ1, µ2, σ
2
1, σ

2
2;Wα) = P[X,Y |µ1,µ2,σ2

1 ,σ
2
2 ]

(
µ1 − µ2 ∈ (X̄ − Ȳ )∓ zr(X,Y )(α)

√
s2X
n

+
s2Y
m

)

To get handle on this quantity, we first notice that

γ(µ1, µ2, σ
2
1, σ

2
2;W ) = γ(0, 0, 1, σ2

2/σ
2
1;W ).

To see this, define X ′ = (X ′
1, · · · , X ′

n) and Y ′ = (Y ′
1 , · · · , Y ′

m) where X ′
i = (Xi − µ1)/σ1

and Y ′
j = (Yj − µ2)/σ1. Then X ′

i
IID∼ Normal(0, 1), Y ′

j
IID∼ Normal(0, σ2

2/σ
2
1) and X ′

i, Y
′
i are

independent. Also,

µ1 − µ2 ∈ (X̄ − Ȳ )∓ zr(X,Y )(α)

√
s2X
n

+
s2Y
m

⇐⇒ 0 ∈ (X̄ ′ − Ȳ ′)∓ zr(X′,Y ′)

√
s2X′

n
+

s2Y ′

m

because X̄ ′ = (X̄ − µ1)/σ1, Ȳ
′ = (Ȳ − µ2)/σ1, s

2
X′ = s2X/σ

2
1, s

2
Y ′ = s2Y /σ

2
1 and r(X ′, Y ′) =

r(X, Y ).
Therefore the confidence coefficient of Wα can be found as

γ(Wα) = min
τ2∈(0,∞)

γ(0, 0, 1, τ 2;Wα).

Unfortunately, it is not possible to get γ(0, 0, 1, τ 2;Wα) in closed form for a given τ 2 (and
α). But we can simulate! Below are some results of a massive simulation in R where we
report γ̃(τ 2) = γ(0, 0, 1, τ 2;W.05).

n m γ̃(1) γ̃(5) γ̃(10) γ̃(100) γ̃(103) γ̃(104) γ̃(105) γ̃(106)
2 2 0.98 0.97 0.96 0.94 0.94 0.95 0.95 0.95
2 4 0.95 0.96 0.96 0.95 0.95 0.95 0.95 0.95
4 4 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95
10 10 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
10 20 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
20 20 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
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