STA 114: STATISTICS

Notes 15. Comparing two groups by their means

A large number of statistical applications boil down to comparing two populations through
their means. For example, suppose you have to decide which of the two sites, site A and site
B, is to be excavated in a copper mine. Your decision is to be based on copper specimens
Xy, , X, from site A and Yi,---,Y,, from site B. A reasonable data model is given by
X; ~ Normal(pi1,0?) and Y; ~ Normal(uz, o3) with X;’s and Y}’s independent of each other.
Your decision on which site to excavate should depend on your assessment of the quantity
n=Hp1— He.

Similar tasks arise in clinical trials when comparing efficacy of a treatment against control,
in comparing income or achievement between two groups (split by gender or race or training
received, etc.), and so on. Note that, what we are interested in here is the difference between
the group specific expected values (means) of the outcome variable. Another interesting
variable to look at would be D =Y, 11 — X, 41, the difference in the outcome value between
future (hypothetical) samples drawn from each group. However, we won’t address this today.

The two means problem with equal variance

In some applications it is reasonable to assume that the two groups have identical variability

around their respective means, i.e., the model simplifies to Xy, ---, X, ~ Normal (1, 02),
Yi, oo Y, ~ Normal(2,0?%), X;’s and Y}’s are independent, with model parameters p; €

(—00,00), g € (—00, ), 02 € (0,00).

We shall denote X = (X3, ---,X,), Y = (Y1,---,Y,), so, our data is (X,Y) and an
observation on this data is denoted (z,y), with x = (z1,--+ ,2,) and y = (Y1, ,Ym)-
Because of the assumed independent between the X;’s and Y;’s, the log-likelihood function
is given by

Coy (i1, pin, 0°) = log f(z,y | pua, p2, 0%)
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To perform ML inference on n = u; — ps, we first need to derive the profile likelihood
function of this quantity. Recall that this function is defined to be:

.(n) = max l,, (ul,u2,02), —00 <N < 0.
Y (p1,p2,02) such that 1—pa=n Y
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That is, the profile likelihood for n equals ¢, ,(fi1, fi2, 5) for the (fu, fi2, %) that enjoys the
best support from observed data (x,y) among all (u1, u2, 02) satisfying py — po = 1. To find
this point (fi1, fi2, 62) we must use a Lagrange multiplier approach.

Define

g(/”‘l?/’L27 027 )‘) - &E,y(,ula H2, 0-2> + )‘(:U’l — M2 — 7])

over —00 < fi1, flg < 00, 02 > 0 and —oo < A < oo. Thenjiy, fis, 62, for some A must be the
solutions of
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Some algebra shows that the solutions must equal
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and consequently,
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MLE and ML intervals of

The MLE 7jy(z, y) of n is found by maximizing the profile likelihood function in 7, which
is same as minimizing the log term on the above right. Because log is a monotone increasing
function, fMyys(r) then must minimize (z — § — n)? in n. This happens at

Mhee(T) =T — 7.
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For any positive constant ¢, the ML interval Be(z,y) = {n: £, ,(n) > €5 ,(Huwe(2)) — /2}

must equal
m (@ =y —n)?
1 1 ntm <
0g< +(n—1)s§+(m—1)s§>_c}

:(x—y)$c’\/(l+i) (n—1)s3 + (m—1)s)

no o m n+m-—2

B.(x,y) = {n ot

n+m

for some ¢ > 0 that depends on ¢ and n, m [more precisely, ¢ = \/(n +m — 2){exp(-) — 1} ~

¢ for large n, m.].

ML confidence intervals for n

)s2+(m—1)s3

n+m—2 at

Let’s calculate the coverage probability of B(x,y) = (z —y) F C\/(% ++) (no1
a given point (pi, 12, 02) in the parameter space. This equals

(ks 2, 0% B) = Pix yiupso? (1 — iz € B(X,Y))
(X =) = (Y — o)

VG

= Plx v o2 | =€ <

= 2®n+m_2(0) —1

because of the following result.

RESULT 1. Suppose X1,---, X, ~ Normal(uy,0?), Y1,---,Y,, ~ Normal(ys,0?), X;’s and
Y;’s are independent. Then

(X—m) - (Y—Mz)

VG )

T —

has a t(n + m — 2) distribution.

Proof. By our old results on normal data, X ~ Normal(u;,0?/n), sz(n —1),Y ~

Normal (2, 02/m), m;—?s%’

each other. Hence U = % ~ Normal(0,1) and V = ("71”%(;(7"*1)3%’ ~xi(n+m—
o\ntm

2) with U and V independent [two independent chi-square variables add to form another

chi-square variable, with the parameters added]. Therefore, T = U/\/V/(n+m —2) ~

t(n+m—2). O

~ x%*(m — 1) and these four random variables are independent of

From the above coverage calculation, it’s clear that the confidence coefficient of (Z — ) F
C\/(l + L) (nDsatml)sy equals 2®,,,,, »(c) — 1. Hence we can form a 100(1 — a)% ML

n m n+m—2
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confidence interval for n by taking ¢ = z,1,—2(a). So an ML 100(1 — a)%-CI for n equals

(z—179) T zn+m_2(a)\/(l n l) (n—1)s2 + (m — 1)s2

nom n+m—2

Unequal variances

In the more general setting, we should allow the two groups to have different variabilities
around their respective means, i.e., we cannot assume o2 = o2. So now our model is
Xy, -, X ~ Normal(py,02), Yy, -, Yy ~ Normal(/rz,az) X,’s and Y}’s are independent.
The model parameters are —00 < iy, fla < 00, 02,05 > 0.

Rather surprisingly exact 100(1 — )% confidence intervals for n = p; — ps are not known
for this problem. Instead, the following approximately 100(1 — «)% confidence interval

(known as Welch’s method) is widely popular:

s2

82
- St Sy
(T —Y) F 2r(ay) (@) s

where the degrees of freedom 7(z,y) depends on data as

7’(.’1;'7 y) = s% Sg

n?(n—1) + m2(m—1)

Example (Soporific drug). In a sleep study, 10 patients (group 1) received a soporific drug
while 10 other patients (group 2) received a placebo. For every patient, their increase in
nightly sleep hours was recorded Let X; denote the measurements from group 1 and Yj’s
those from group 2. Model X; ~ Normal(ui,02), Y; ~ Normal(uz,02), X;’s and Yj’s are
independent. We are interested in confidence 1ntervals for n = py1 — po based on observatlons
(1.9, 0.8, 1.1, 0.1, 0.1, 4.4, 5.5, 1.6, 4.6, 3.4) from group 1 and (0.7, -1.6, -0.2, -1.2, -0.1,
3.4, 3.7, 0.8, 0.0, 2.0) from group 2. For these observations n = m = 10, z = 2.33, s, = 2,
= 0.75 and s, = 1.79.
If we assume o? = 03, then a 95%-confidence interval for 7 is

1.58 F 215(.05) x 0.85 = 1.58 F 2.1 x 0.85 = [—0.205, 3.365].

On the other hand, if we didn’t assume equality and the variance, then we first calculate
r(z,y) = 17.78 (fairly close to n +m — 2 = 18). Therefore a 95% (approximate) confidence
interval is

1.58 F 217.75(0.05) x 0.85 = [—0.205, 3.365].

Confidence coefficient of Welch’s interval

Let W, (z,y) denote Welch’s 100(1 — )% approximate confidence interval for n = g — po.
Can we calculate its exact confidence coefficient? For any —oo <y, s < 00, 03,05 > 0,



it’s coverage is (by definition):

o 2 2
’}/(Ml, K2, O-%’ 05; WO‘) - P[X:Y|M17M2,U%70§] (Ml — 2 € (X - Y) + ZT(X,Y)(Q) % + %)

To get handle on this quantity, we first notice that
7(#1: 2, U%: Ug; W) = 7(07 0,1, US/U%; W)

To see this, define X’ = (X{,---, X)) and Y' = (Y/,---.,Y]) where X] = (X; — p1)/o1
and Y/ = (Y; — pi2)/or. Then X! =~ Normal(0,1), Y/ ~ Normal(0,03/0%) and X/, Y/ are
independent. Also,

2 2 &2 2

_ _ S S _ _
n1 — Ug € (X - Y) F ZT(X,y)(OO % + EY — 0e (X/ - Y/) F 2r(x',y)

because X' = (X — 1) /o1, Y = (Y — pa) /o1, % = s% /03, s3, = s2Jo? and r(X',Y') =
r(X,Y).
Therefore the confidence coefficient of W, can be found as

7Y(Wa) = min ~(0,0,1,7% W,).

72€(0,00)

Unfortunately, it is not possible to get v(0,0,1,7% W,) in closed form for a given 72 (and
«). But we can simulate! Below are some results of a massive simulation in R where we
report 5/(7—2) = 7(07 07 17 7-2; W05>‘

7(1) 4(5) 4(10) 4(100) (10%) F(10%) 5(10°) (10°%)

n | m
2121098 097 0.96 0.94 0.94 0.95 0.95 0.95
214109 09 0.96 0.95 0.95 0.95 0.95 0.95
4 14109 095 095 0.95 0.95 0.95 0.95 0.95
101101 095 095 0.95 0.95 0.95 0.95 0.95 0.95
10 1201 095 0.95 0.95 0.95 0.95 0.95 0.95 0.95
201201095 095 0.95 0.95 0.95 0.95 0.95 0.95



