

STA 611: Introduction to Statistical Methods – Fall 2012
Homework 8 – due November 8, 2012

These exercises are meant to be representative of the material in Chapters 8.1-8.5 in DeGroot and Schervish.

1. Let X_1, \dots, X_n be a random sample from $N(\mu, 9)$. In each case, determine how large n must be for the statement to hold
 - (a) $E((\bar{X}_n - \mu)^2) \leq 0.1$
 - (b) $P(|\bar{X}_n - \mu| \leq 0.1) \geq 0.95$
2. Let $X_i \sim N(i, i^2)$ be independent for $i = 1, 2, 3$. Use the X_i 's to construct a statistic that has the following distributions:
 - (a) χ_3^2
 - (b) t_2
3. The t_m distribution was introduced as a ratio

$$T = \frac{Z}{\sqrt{Y/m}}$$

of independent random variables $Z \sim N(0, 1)$ and $Y \sim \chi_m^2$. Show that T^2 is a ratio of two independent Gamma-distributed random variables, each with mean one. Find the parameters for each Gamma distribution.

4. Let X_1, \dots, X_n be a random sample from $N(\mu, \sigma^2)$, where both μ and σ^2 are unknown.
 - (a) For $n = 25$ calculate the following probabilities
 - i. $P(0.8\sigma^2 \leq \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 \leq 1.2\sigma^2)$
 - ii. $P(0.8\sigma^2 \leq \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 \leq 1.2\sigma^2)$
 - (b) Find the smallest n so that $P\left(\frac{1}{n\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 \leq 1.4\right) \geq 0.9$
5. Suppose you shoot an arrow at a very large circular target. Suppose the center of the target is at the origin and let (X, Y) be the coordinates of the point of impact. Assume that X and Y are independent $N(0, 1)$ random variables.
 - (a) What is the probability that the point of impact is no further than 2 units from the origin? (*Hint: It may be easier to work with the distribution of the squared distance.*)

6. The following measurements were made:

$$\begin{aligned} & 0.95, 0.85, 0.92, 0.95, 0.93, 0.86, 1.00, 0.92, 0.85, 0.81 \\ & 0.78, 0.93, 0.93, 1.05, 0.93, 1.06, 1.06, 0.96, 0.81, 0.96 \end{aligned}$$

A histogram of this data suggests that the distribution is approximately $N(\mu, \sigma^2)$ with unknown μ and σ^2 .

- (a) Calculate the observed two-sided (symmetric) 95% confidence interval for μ .
- (b) Calculate the observed two-sided (symmetric) 95% confidence interval for σ^2 .
- (c) Calculate the observed two-sided (symmetric) 95% confidence interval for σ .

7. Let X_1, \dots, X_n be a random sample from $\text{Uniform}(0, \theta)$

- (a) Let $Y = \max(X_1, \dots, X_n)$. Show that Y/θ is a pivotal quantity
- (b) Construct a $100\gamma\%$ confidence interval for θ