
Chapter 1 - continued

Chapter 1 sections

1.4 Set Theory
SKIP: Real number uncountability

1.5 Definition of Probability
1.6 Finite Sample Spaces
1.7 Counting Methods
1.8 Combinatorial Methods
1.9 Multinomial Coefficients
SKIP: 1.10 The Probability of a Union of Events
SKIP: 1.11 Statistical Swindles
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Chapter 1 - continued

Announcements and Correction

First homework due Thurs. Sep 6
Due in class or in my mail box (211b Old Chemistry building) by
5pm Thursday

I have added one more problem to the first homework - the
link is on the website.
Got one and a half TA - office hours coming soon
Tentative lecture schedule on the website

Correction for Lecture 1
Formula for integration by parts had a typo in it ( - was replaced by +).
The correct formula is∫

f (x)g′(x)dx = f (x)g(x)−
∫

f ′(x)g(x)dx
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Chapter 1 - continued 1.5 Definition of Probability

Definition of Probability

Def: Probability measure

A probability on a sample space S is a function P(A) for all events A
that satisfies Axioms 1, 2 and 3

Axiom 1 P(A) ≥ 0 for all events A
Axiom 2 P(S) = 1
Axiom 3 For every infinite sequence of disjoint events

A1, A2, A3, . . .,

P

(∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai)

Finite sequence of disjoint events: It follows from Axiom 3 that

P

 
n[

i=1

Ai

!
=

nX
i=1

(Ai)
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Chapter 1 - continued 1.5 Definition of Probability

Definition of Probability

The axioms of probability are properties that
we intuitively expect a probability to have
The axioms are not concerned with the
different interpretations of what probability
means
All probability theory is built on these axioms
The mathematical foundations of probability
(including these axioms) were laid out by
Andrey Kolmogorov in 1933
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Chapter 1 - continued 1.5 Definition of Probability

Examples of probability measures

Tossing one fair coin

S = {H, T}
Since the coin is fair we set P(H) = P(T ) = 1/2
All axioms are satisfied

Random point in the unit square

S = {(x , y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
For an event A ⊂ S we set P(A) = the area of A
Obviously P(S) = 1 and P(A) ≥ 0 for all A
Axiom 3: For any sequence of disjoint subsets in S the area of all
of them is the same as the sum of the areas of each one.

What is the probability of (0.1, 0.3) ?

Area of a point is zero so
P((x , y) = (0.1, 0.3)) = 0. For continuous sample spaces, a zero
probability does not necessarily mean impossibility.
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Chapter 1 - continued 1.5 Definition of Probability

Properties of probability

Theorem
If P is a probability and A and B are events then

If A ⊂ B then P(A) ≤ P(B)

P(A ∩ Bc) = P(A)− P(A ∩ B)

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

These can be shown from the three axioms of probability.

Theorem
If P is a probability and A is an event then

P(Ac) = 1− P(A)

P(∅) = 0
0 ≤ P(A) ≤ 1
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Chapter 1 - continued 1.5 Definition of Probability

Useful inequalities

Theorem: Bonferroni inequality
For any events A1, A2, . . . , An

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P(Ai) and P

(
n⋂

i=1

Ai

)
≥ 1−

n∑
i=1

P(Ac)

The second inequality can be derive from the first one.
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Chapter 1 - continued 1.5 Definition of Probability

Example 1.5.11

A point (x , y) is to be selected from the square S containing

S: The square {(x , y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
Probability of a subset of S is equal to the area of that subset

Find the probabilities of the following subsets:
1 The subset of points such that (x − 1/2)2 + (y − 1/2) ≥ 1/4
2 The subset of points such that 1/2 < x + y < 3/2
3 The subset of points such that y ≤ 1− x2

4 The subset of points such that x = y
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Chapter 1 - continued 1.6 Finite Sample Spaces

Terminology

Finite vs. Infinite: The number of people in this room is finite.
The amount of time it takes for everyone to love statistics may be
infinite :-).
Discrete vs. continuous: Time moves continuously but the hours
on a digital clock move discretely.
Countable vs. uncountable: N, Z and Q are countable, R is
uncountable
Simple sample space: A finite sample space,
S = {s1, s2, . . . , sn}, where every outcome is equally likely, i.e.

P(si) =
1
n

for all i and P(E) =
#E
n

Need “only” count the outcomes in an event to find it’s probability
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Chapter 1 - continued 1.7 Counting Methods

Counting

What are the chances of winning the lottery?
In a hand of 5 cards, how likely is it to get four aces?

Multiplication rule
If a job consists of k parts (k ≥ 2), and the i th part has ni possible
outcomes regardless of what outcomes came before, then the job can
be done in

n1 × n2 × · · · × nk ways

For example: A frozen yogurt parlor has three types of frozen
yogurts.
If you also get one topping (sprinkles, mini m&m’s or skittles) and
a sause (chocolate or caramel) there are 3× 3× 2 = 18 ways you
can enjoy the frozen yogurt.
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Chapter 1 - continued 1.7 Counting Methods

Counting

Permutations and combinations
In how many ways can people in a committee of 4 be assigned
four roles (president, vice president, treasurer, secretary)? This is
permutation

In P4,4 = 4! = 24 ways

In how many ways can 10 people form a committee of 4? This is
combination (think: subset)

In C10,4 =

(
10
4

)
=

10!

(10− 4)!4!
= 210 ways
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Chapter 1 - continued 1.8 Combinatorial Methods

Counting - Overview

Number of ways one can pick k things out of n depends the situation
Ordered samples with replacement

nk

Ordered samples without replacement (Permutation if n = k ):

Pn,k = n × (n − 1)× · · · × (n − k + 1) =
n!

(n − k)!

Unordered samples with replacement:(
n + k − 1

k

)
Unordered samples without replacement (Combinations):

Cn,k =

(
n
k

)
=

n!

k !(n − k)!
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Chapter 1 - continued 1.8 Combinatorial Methods

Examples
Using counting to find probabilities

1 You are in a room of 12 people. What is the probability that at
least 2 of those people have the same birthday?

2 What is the probability that in a hand of 5 cards you get four aces?
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Chapter 1 - continued 1.9 Multinomial Coefficients

Binomial and Multinomial theorems

Binomial coefficient - number of ways to choose k items out of n
(without replacement): (

n
k

)
=

n!

(n − k)!k !

Binomial Theorem:

(x + y)n =
n∑

k=0

(
n
k

)
xk yn−k

Multinomial coefficient - number of ways to divide n items into k
different groups:(

n
n1, n2, . . . , nk

)
=

n!

n1!n2! · · · nk !
,

nj = no. of items in group j
and n1 + n2 + · · ·+ nk = n

Multinomial Theorem:

(x1 + x2 + · · ·+ xk )n =
∑

n1+···+nk =n

(
n

n1, n2, . . . , nk

)
xn1

1 xn2
2 · · · x

nk
k
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END OF CHAPTER 1
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Chapter 2

Chapter 2

2.1 The Definition of Conditional Probability
2.2 Independent Events
2.3 Bayes’ Theorem
SKIP 2.4 The Gambler’s Ruin Problem
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Chapter 2 2.1 The Definition of Conditional Probability

Definition of conditional probability

If we know that event B has occurred what is the probability of event A?

Def: Conditional Probability
The conditional probability of event A given that event B has occurred:

P(A|B) =
P(A ∩ B)

P(B)
if P(B) > 0

Conditional probabilities behave just like probabilities - we can
show that they satisfy the three Kolmogorov axioms.
⇒ All theorems stated about probabilities also hold for conditional
probabilities!

For example: P(A|B) = 1− P(Ac |B)
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Chapter 2 2.1 The Definition of Conditional Probability

Law of total probability

Def: Partition
Let S be a sample space. If A1, A2, A3, . . . are disjoint and

⋃∞
i=1 Ai = S

then the collection A1, A2, A3, . . . is called a partition of S

Law of total probability
If events B1, . . . , Bk form a partition of the sample space S and
P(Bj) > 0 for all j , then for every event A in S

P(A) =
k∑

i=1

P(Bj)P(A|Bj)
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Chapter 2 2.1 The Definition of Conditional Probability

Monty Hall Problem

Suppose you’re on a Monty Hall’s game show, and
you’re given the choice of three doors.
Behind one door is a car; behind the others, goats.
You win the price behind the door your choose.

You pick door No. 1 (but the door is not opened), and the host,
who knows what’s behind the doors opens door No. 3 which has a
goat. (Monty will never show you the car)

Monty Hall then says to you:

"Do you want to stay with door No.1 or switch to door No. 2?"

For an alternative illustration, using a different argument see
http://www.youtube.com/watch?v=mhlc7peGlGg&feature=related
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Chapter 2 2.3 Bayes’ Theorem

Bayes’ Theorem

Bayes’ Theorem

If B1, B2, . . . , Bk form a partition of S and P(Bj) > 0 ∀j and P(A) > 0
then

P(Bi |A) =
P(Bi)P(A|Bi)∑k
j=1 P(Bj)P(A|Bj)

Example: Blood test for a disease

P(+|sick) = 0.9 and P(−|healthy) = 0.85
Prevalence of the disease in the country is 5%
If you get a negative test result, what is the prob. that you are sick?

P(sick|−) =
P(sick)P(−|sick)

P(sick)P(−|sick) + P(healthy)P(−|healthy)

=
0.05× 0.1

0.05× 0.1 + 0.95× 0.85
= 0.00615
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Chapter 2 2.2 Independent Events

Independence

Def: Independent events
Two events A and B are said to be (statistically) independent if

P(A ∩ B) = P(A)× P(B)

Consequence: If A and B are independent then

P(A|B) =
P(A ∩ B)

P(B)
=

P(A)P(B)

P(B)
= P(A) and P(B|A) = P(B)

Theorem
If A and B are independent, so are the following pairs

A and Bc

Ac and B
Ac and Bc
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Chapter 2 2.2 Independent Events

Mutually independent events

Def: Mutually independent events
Events A1, A2, . . . , Ak are mutually independent if for every subset
Ai1 , . . . , Aij , j = 2, . . . , j

P(Ai1 ∩ · · · ∩ Aij ) = P(Ai1)× · · · × P(Aij )

Note:
P(A ∩ B ∩ C) = P(A)P(B)P(C) does not imply mutual
independence.
Pairwise independence does not imply mutual independence.

Def: Conditional independence
Events A1, A2, . . . , Ak are conditionally independent given B if for every
subset Ai1 , . . . , Aij , j = 2, . . . , j

P(Ai1 ∩ · · · ∩ Aij |B) = P(Ai1 |B)× · · · × P(Aij |B)
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Chapter 2 2.2 Independent Events

Example: Tossing two dice
P(A ∩ B ∩ C) = P(A)P(B)P(C) does not imply mutual independence

Consider the following three events:
Event A: Get doubles. P(A) = 6/36 = 1/6
Event B = {7 ≤ sum ≤ 10}. P(B) = 18/36 = 1/2
Event C = {the sum is 2, 7 or 8}. P(C) = 12/36 = 1/3

We have P(A ∩ B ∩ C) = P(A)P(B)P(C)

A ∩ B ∩ C = {(4, 4)} so P(A ∩ B ∩ C) = 1/36 and
P(A)P(B)P(C) = 1/6× 1/2× 1/3 = 1/36

But P(A ∩ B) 6= P(B)P(C) since
B ∩ C = {sum is 7 or 8} so P(B ∩ C) = 11/36 but
P(B)P(C) = 1/2× 1/3 = 1/6

Therefore, A, B and C are NOT mutually independent.
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Chapter 2 2.2 Independent Events

Example: Letters
Events can be pairwise independent without being mutually independent

Let S be a simple sample space where

S = {aaa, bbb, ccc, abc, acb, bac, bca, cab, cba}

Let Ai = {i th place has an a }.
Easy to see that P(Ai) = 3

9 = 1
3 for i = 1, 2, 3

Only one element has a in two places so

P(A1 ∩ A2) = P(A1 ∩ A3) = P(A2 ∩ A3) =
1
9

So A1, A2 and A3 are pairwise independent.

P(A1 ∩ A2 ∩ A3) = 1
9 but P(A1)P(A2)P(A3) = 1

33 = 1
27

So A1, A2 and A3 are NOT mutually independent.
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END OF CHAPTER 2
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