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Chapter 3 3.1 Random Variables and Discrete Distributions

Random Variables

Def: Random Variable
A random variable is a function from a sample space S to the real
numbers R

P(X = xi) = P({sj ∈ S : X (sj) = xi})

or
P(X ∈ A) = P({sj ∈ S : X (sj) ∈ A})

Note: Random variables are denoted by capital letters and the
values they take (their outcome) with lowercase

Examples:

Experiment Random variable
Toss two dice X = sum of the numbers
Apply different amounts
of fertilizer to corn plants X = yield per acre
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Chapter 3 3.1 Random Variables and Discrete Distributions

Discrete random variables

Def: Probability (mass) function
A random variable X is said to have a discrete distribution if X can only
take countable number of different values.
The probability function (pf) for X is defined as

f (x) = P(X = x) defined for all x ∈ R

Bernoulli distribution
Let p be the probability of winning a bet and define X = 0 if we loose
and X = 1 if we win. Then X has the Bernoulli distribution with
parameter p, often denoted X ∼ Bernoulli(p), and the pf is

f (x) =


p if x = 0
1− p if x = 1
0 otherwise
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Chapter 3 3.1 Random Variables and Discrete Distributions

Example: Rolling sixes

We are interested in the number of 6’s we obtain in four rolls of a
fair dice.
Find the pf of this random variable
Use this pf to calculate the probability of obtaining at least one 6 in
four rolls.
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Chapter 3 3.1 Random Variables and Discrete Distributions

Binomial distribution

Binomial distribution
X = the number of “successes” in n independent trials, where the
probability of success is p. Then

P(X = x) =

(
n
x

)
px(1− p)n−x x = 0, 1, . . . , n

so the pf is f (x) =

{ (n
x

)
px(1− p)n−x if x = 0, 1, . . . , n

0 otherwise

X is said to have the Binomial distribution with parameters n and p,
often denoted X ∼ Binomial(n, p)

A Binomial(n, p) random variable is a sequence of n independent
Bernoulli(p) trials
I.e. Bernoulli(p) = Binomial(1, p)
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Chapter 3 3.2 Continuous Distributions

Continuous random variables

Def: Probability density function
A random variable X is said to have a continuous distribution if there
exists a non-negative function f defined on the real line such that

P(x1 ≤ X ≤ x2) =

∫ x2

x1

f (x)dx

The function f is called the probability density function (pdf).
The closure of the set {x : f (x) > 0} is called the support of X .

Examples
If X is Uniformly distributed in [a, b], or X ∼ Uniform(a, b), every
interval in [a, b] has probability proportional to it’s length. The pdf
is

f (x) =
1

b − a
, x ∈ [a, b], 0 otherwise .
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Chapter 3 3.1 and 3.2

Properties of pdf’s and pf’s

Theorem
A function f (x) is a pdf (or pf) of a random variable X if and only if both
of the following holds

1 f (x) ≥ 0 for all x
2 For pf’s:

∞∑
i=1

f (x1) = 1

for pdf’s: ∫ ∞
−∞

f (x)dx = 1

The coefficient (e.g. 1
b−a ) that ensures that 2 is satisfied is called the

normalizing constant .
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Chapter 3 3.1 and 3.2

Examples

1 Show that

f (x) =

(
n
x

)
px(1− p)n−x , x = 0, 1, . . . , n, f (x) = 0, otherwise

is a pf
2 Show that

f (x) =
1

(1 + x)2 , for x > 0, f (x) = 0, otherwise

is a pdf
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Chapter 3 3.3 The Cumulative Distribution Function

Cumulative Distribution Function

Def: Cumulative distribution function
The Cumulative distribution function (cdf) of a random variable X is

F (x) = P(X ≤ x) for −∞ < x∞

Relationship between the cdf and p(d)f
Continuous distributions:

F (x) = P(X ≤ x) =

∫ x

−∞
f (u)du

and f (x) =
d
dx

F (x)

Discrete distributions:

F (xi) = P(X ≤ xi) =
∑

{u:u≤xi}

f (u)
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Chapter 3 3.3 The Cumulative Distribution Function

Example

Sketch the pf and cdf for Binomial(4, 1/6) (Tossing sixes example)

f (x) = P(X = x) =

(
4
x

)(
1
6

)x (5
6

)4−x

x = 0, 1, 2, 3, 4

x 0 1 2 3 4
f(x) 0.482 0.386 0.116 0.015 0.001
F(x) 0.482 0.868 0.984 0.999 1.000
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Chapter 3 3.3 The Cumulative Distribution Function

Properties of the cdf

Theorem
A function F (x) is a cdf if and only if the following three conditions
hold:

1 limx→−∞ F (x) = 0 and limx→∞ F (x) = 1
2 F(x) is a nondecreasing function of x
3 F(x) is right-continuous; i.e. limx↓x0 F (x) = F (x0)

Note that limx↑x0 F (x) is not necessarily equal to F (x0)

In practice we use the pdf (or pf) much more than the cdf.
However, the cdf has some additional theoretical properties
(e.g. uniqueness) that the pdf does not have.
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Chapter 3 3.3 The Cumulative Distribution Function

Example

Consider the following cdf of a random variable X :

F (x) =


0 for x ≤ 0
1
9x2 for 0 < x ≤ 3
1 for x > 3

1 Verify that this is a cdf
2 Find and sketch the pdf of X
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Chapter 3 3.3 The Cumulative Distribution Function

Properties of the cdf

Theorem
P(X > x) = 1− F (x) for all x
P(x1 < X ≤ x2) = F (x2)− F (x1) for all x1 < x2

For all x : P(X = x) = F (x)− F (x−) where F (x−) = limy↑x F (y)

For discrete distributions f (x) = P(X = x) is equal to the jump the
cdf F takes at x
For continuous distributions P(X = x) = 0 6= f (x)!
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Chapter 3 3.3 The Cumulative Distribution Function

Identically distributed

Def: Identically distributed
Random variables X and Y are identically distributed (id) if for every
set A we have P(X ∈ A) = P(Y ∈ A)

NOTE: X and Y are NOT necessarily the same
Example: Let X and Y be the number of head and tails,
respectively, in n tosses of a fair coin. They are not the same
random variable, but they have the same distribution!

Theorem
The following are equivalent:

1 Random variables X and Y are identically distributed
2 FX (x) = FY (x) for all x
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Chapter 3 3.3 The Cumulative Distribution Function

Quantile Function

Def: Quantiles/Percentiles
Let X be a random variable with cdf F (x) and let p ∈ (0, 1).
We define the quantile function of X as

F−1(p) = the smallest x such that F (x) ≥ p

F−1(p) is called the p quantile of x or the 100× p percentile pf X

If F (x) is continuous and one-to-one the quantile function is the
inverse of F (x). Then there is only one x such that F (x) = p.
Example: The quantile function for

F (x) =


0 for x ≤ 0
1
9 x2 for 0 < x ≤ 3
1 for x > 3

is F−1(p) = 3
√

p, p ∈ (0, 1)

The median is sometimes defined as the 0.5 quantile, but
sometimes as the midpoint of the interval [x1, x2) where
F (x) = 0.5 for all x ∈ [x1, x2).
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