
Chapter 3 - continued

Chapter 3 sections

3.1 Random Variables and Discrete Distributions
3.2 Continuous Distributions
3.3 The Cumulative Distribution Function
3.4 Bivariate Distributions
3.5 Marginal Distributions
3.6 Conditional Distributions
Just skim: 3.7 Multivariate Distributions (generalization of bivariate
- random vectors)
3.8 Functions of a Random Variable
3.9 Functions of Two or More Random Variables
SKIP: 3.10 Markov Chains
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Bivariate discrete distributions

Def: Discrete joint distribution / joint pf
Let X and Y be random variables. If there are at most countable
possible outcomes (x , y) for the pair (X , Y ), we say that X and Y have
a discrete joint distribution.
The joint probability function (joint pf) is

f (x , y) = P(X = x and Y = y) =: P(X = x , Y = y) ∀(x , y) ∈ R2

As for univariate case we have f (x , y) ≥ 0 and∑
All (x ,y)∈R2

f (x , y) = 1

and
P((X , Y ) ∈ C) =

∑
(x ,y)∈C

f (x , y)
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Example - Three coin tosses

A fair coin is tossed three times. Let
X = number of heads on the first toss
Y = total number of heads

The pf f (x , y) can be given in a table:

y
x 0 1 2 3
0 1

8
2
8

1
8 0

1 0 1
8

2
8

1
8

Can easily see that
∑
(x ,y)

f (x , y) = 1
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Bivariate continuous distributions

Def: Continuous joint distribution / joint pdf
Two random variables X and Y have a continuous joint distribution if
there exists a non-negative function f such that for every C ⊂ R2

P((X , Y ) ∈ C) =

∫
C

∫
f (x , y)dxdy

The function f is called the joint probability density function (joint pdf).

A joint pdf must satisfy:

f (x , y) ≥ 0 −∞ < x <∞, −∞ < y <∞

and
∫ ∞
−∞

∫ ∞
−∞

f (x , y)dxdy = 1

Mixed discrete and continuous variables: Use integrals for
continuous dimension, and sums for discrete dimension.
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Example

Verify that

f (x , y) =

{
8xy if 0 < y < x < 1
0 otherwise

is a joint pdf
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Bivariate cumulative distribution function

Def: Joint cumulative distribution function
The joint cumulative distribution function (joint cdf) of two random
variables X and Y is

F (x , y) = P(X ≤ x , X ≤ y) ∀(x , y) ∈ R2

Relationship between joint cdf’s and joint pdf’s:
Continuous:

F (x , y) =

∫ y

−∞

∫ x

−∞
f (r , s)drds

and
f (x , y) =

∂2F (x , y)

∂x∂y
=

∂2F (x , y)

∂y∂x
Discrete:

F (x , y) =
∑
r≤x

∑
s≤y

f (r , s)
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Example

Find the joint cdf for the following joint pdf

f (x , y) =

{
8xy if 0 < y < x < 1
0 otherwise
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Marginal distributions - discrete random variables

Theorem
Let (X , Y ) be a discrete random vector with joint pf fX ,Y (x , y), then the
marginal pfs of X and Y are given by

fX (x) = P(X = x) =
∑
y∈R

f (x , y)

and fY (y) = P(Y = y) =
∑
x∈R

f (x , y)

Example: Find the marginal distributions for the coin toss example
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Marginal distributions - continuous random variables

Theorem
Let (X , Y ) be a continuous random vector with joint pdf fX ,Y (x , y), then
the marginal pdfs of X and Y are given by

fX (x) =

∫ ∞
−∞

f (x , y)dy for −∞ < x <∞

and fY (y) =

∫ ∞
−∞

f (x , y)dx for −∞ < y <∞

Example: Find the marginal distributions for

f (x , y) = 8xy for 0 < y < x < 1
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Independence

Independence for random variables is defined in the same way as for
events

Def: Independent random variables
Two random variables are independent if for every two sets A and B in
R the events {s : X (s) ∈ A} and {s : Y (s) ∈ B} are independent
events

Theorem
Random variables X and Y are independent if and only if

FX ,Y (x , y) = FX (x)FY (y)

STA 611 (Lecture 04) Random Variables and Distributions Sep 6, 2012 10 / 16



Chapter 3 - continued 3.5 Marginal Distributions

Independence

The following holds for both discrete and continuous random variables:

Theorem
Two random variables X and Y with joint pf/pdf f (x , y) and marginal
pf’s/pdf’s fX (x) and fY (y) are independent if and only if

f (x , y) = fX (x)fY (y)

for ALL (x , y) ∈ R2

Examples: Are the following random variables independent?
1 X and Y in the tossing coin example
2 X and Y with joint pdf f (x , y) = 6xy2 for 0 < y < 1 and 0 < x < 1
3 X and Y with joint pdf f (x , y) = 8xy for 0 < y < x < 1
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Independence

A helpful theorem

Theorem
Let X and Y be random variables with joint pf/pdf f (x , y) and support
that is a rectangle R in R2 (possibly unbounded).
Then X and Y are independent if and only if f can be written as

f (x , y) = h1(x)h2(y)

for all (x , y) ∈ R
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Conditional distributions

Def: Conditional distribution
Let X and Y be random variables with joint pf/pdf f (x , y). Let fY (y) be
the marginal pf/pdf of Y and let y be a value such that fY (y) > 0. Then
the conditional pf/pdf of X given that Y = y is defined as

f (x |y) =
f (x , y)

fY (y)

Note that in the continuous case we are conditioning on
something that has probability 0. We need to show that the
continuous case of f (x |y) is indeed a pdf

Examples: Find the conditional pf/pdf:
X |Y = 2 from the tossing coin example
X |Y = y where the joint pdf is f (x , y) = 8xy for 0 < y < x < 1
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Independence and conditional distributions

Theorem
Random variables X and Y are independent if and only if

f (x |y) = fX (x)

We have the law of total probability for random variables (Theorem
3.6.3 in the book)
We also have Bayes’ theorem for random variables (Theorem
3.6.4 in the book)
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Multivariate Distributions - extension of bivariate

Random vector: X = (X1, X2, . . . , Xn)

Joint cdf:

F (x) = F (x1, x2, . . . , xn) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

Discrete joint pf:

f (x) = f (x1, x2, . . . , xn)

= P(X1 = x1, X2 = x2, . . . , Xn = xn) = P(X = x)

Continuous joint pf:

f (x) = f (x1, x2, . . . , xn) =
∂nF (x1, x2, . . . , xn)

∂x1 · · · ∂xn

P(X ∈ C) =

∫
· · ·
C

∫
f (x1, x2, . . . , xn)dx1 · · · dxn
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Multivariate Distributions - extension of bivariate

Marginal pdf - integrate out all the others, e.g:

f1(x1) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f (x1, x2, . . . , xn)dx2 · · · dxn

X1, . . . , Xn are independent if for every set A1, . . . , An in R

P(X1 ∈ A1, . . . , Xn ∈ An) = P(X1 ∈ A1)× · · · × P(Xn ∈ An)

X1, . . . , Xn are independent if and only if

F (x1, x2, . . . , xn) = F1(x1)× F2(x2)× · · · × Fn(xn)

X1, . . . , Xn are independent if and only if

f (x1, x2, . . . , xn) = f1(x1)× f2(x2)× · · · × fn(xn)

Conditional pdfs

f (x|y) = f (x1, x2, . . . , xn|y1, y2, . . . , yk )

=
f (x1, x2, . . . , xn, y1, y2, . . . , yk )

fY(y1, y2, . . . , yk )
=

f (x, y)

fY(y)
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