Chapter 4 sections

@ 4.1 Expectation

@ 4.2 Properties of Expectations

@ 4.3 Variance

@ 4.4 Moments

@ 4.5 The Mean and the Median

@ 4.6 Covariance and Correlation
@ 4.7 Conditional Expectation
@ SKIP: 4.8 Utility
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Summarizing distributions

@ The distribution of X contains everything there is to know about
the probabilistic properties of X.
@ However, sometimes we want to summarize the distribution of X
in one or a few numbers
e e.g. to more easily compare two or more distributions.
@ Examples of descriptive quantities:
e Mean ( = Expectation)
@ Center of mass - weighted average

Centor otmass 1§

......

e Median, Moments
e Variance, Interquartile Range (IQR), Covariance, Correlation
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Chapter 4 4.1 Expectation

Definition of Expectation p = E(X)

Def: Mean aka. Expected value

Let X be a random variable with p(d)f f(x). The mean, or expected
value of X, denoted E(X), is defined as follows
@ X discrete:
E(X)=>_ xf(x)
All x
assuming the sum exists.
@ X continuous:

E(X) = / = r(x) dx

—00

assuming the integral exists.

If the sum or integral does not exists we say that the expected value
does not exist.

The mean is often denoted with .
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Chapter 4 4.1 Expectation

Examples

@ Recall the distribution of Y = the number of heads in 3 tosses
(coin toss example from Lecture 4)

y |0 1 2
) ls 8 8 3
1 112
E(Y) =0 3 .3 3

then

STA 611 (Lecture 06) Expectation Sep 13, 2012 4/19



Chapter 4 4.1 Expectation

Examples

@ Recall the distribution of Y = the number of heads in 3 tosses
(coin toss example from Lecture 4)

y |0 1 2
) ls 8 8 3
1 112
E(Y) =0 3 .3 3

then

@ Find E(X) where X ~ Binom(n, p). The pf of X is
f(x) = <Z>px(1 ~p)" ¥ forx=0,1,....n
@ Find E(X) where X ~ Uniform(a, b). The pdf of X is
f(x):% fora<x<b
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Chapter 4 4.1 Expectation

Expectation of g(X)

Theorem 4.1.1

Let X be a random variable with p(d)f f(x) and g(x) be a real-valued
function. Then
@ X discrete:
E (9(X)) = >_ g()f(x)
All x
@ X continuous:

E(g() = [ " g(x)f(x) o

Example: Find E(X?) where X ~ Uniform(a, b).
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Expectation of g(X, Y)

Theorem 4.1.2

Let X and Y be random variables with joint p(d)f f(x, y) and let g(x, y)
be a real-valued function. Then

@ X and Y discrete:

E(9(X.Y))= Y gx,y)f(x.y)
All x,y

@ X and Y continuous:

E(g(X,Y)) = / / g(x.y)f(x, y) dx dy

Example: Find E (¥}Y) where X and Y are independent and
X ~ Uniform(a, b) an d Y ~ Uniform(c, d).
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Properties of Expectation
Theorems 4.2.1, 4.2.4 and 4.2.6:

@ E(aX + b) = aE(X) + b for constants a and b.
@ Let Xi,..., X, be nrandom variables, all with finite expectations

E(X;), then
E (Z x,-) =Y _E(X)
i=1 i=1

o Corollary: E(a1 X1 +---+apXp+ b)=a1E(X1)+---+anE(Xp)+ b
for constants b, ay, ..., an.
@ Let Xj,..., X, be nindependent random variables, all with finite
expectations E(X;), then

e (I1x) - ITeoo
i=1 i=1

CAREFUL !!l'In general E(g(X)) # g(E(X)).
For example: E(X?) # [E(X)]?

STA 611 (Lecture 06) Expectation Sep 13, 2012 7/19



Examples

@ If Xy, Xz,..., X, are i.i.d. Bernoulli(p) random variables then
Y =3, Xi ~ Binomial(n, p).

EX)=0x(1—-p)+1xp=p fori=1,...,n
n n n
éE(Y)=E<Z&> =Y E(X)=)_p=np
i=1 =1 i=1

Note: i.i.d. stands for independent and identically distributed
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Definition of Variance o2 = Var(X)

Def: Variance

Let X be a random variable (discrete or continuous) with a finite mean
p = E(X). The Variance of X is defined as

Var(X) = E ((x - u)2)

The standard deviation of X is defined as /Var(X)

We often use o2 for variance and o for standard deviation.

Theorem 4.3.1 — Another way of calculating variance
For any random variable X

Var(X) = E(X?) - [EX)P
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Examples - calculating the variance

@ Recall the distribution of Y = the number of heads in 3 tosses
(coin toss example from Lecture 4)

y |01 23
MW ls 5 § 8
We already found that . = E(Y) = 1.5. Then
21 23
Var(Y) = (0 —1.5) §+(1 —1.5) 3
3 1
2 -15)2Z —1.5)2-
+ ( 5) 8+(3 5) 3

=0.75

@ Find Var(X) where X ~ Uniform(a, b)
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Properties of the Variance

Theorems 4.3.2, 4.3.3, 4.3.4 and 4.3.5
@ Var(X) > 0 for any random variable X.

@ Var(X) = 0if and only if X is a constant,
i.e. P(X = c) =1 for some constant c.

@ Var(aX + b) = @Var(X)

o If Xi,..., X, are independent we have

Var (i X,-) = iVar(X,-)
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Examples

@ If Xy, X5,..., X, are i.i.d. Bernoulli(p) random variables then
Y =3, Xi ~ Binomial(n, p).

E(X)=p fori=1,...,n
EX))=0°x(1-p)+12xp=p fori=1,...,n
= Var(X)) = E(X?) - [E(X)]? = p— p* = p(1 — p)

= Var(Y) = Var (Z X,) = ZVar(X,-) = Zp(1 -p)
i=1 i=1 i=1

= np(1 —p)
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Chapter 4 4.3 Variance

Measures of location and scales

The mean is a measure of location, the variance is a measure of scale.

Different mean, same variance Same means, different variance
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Moments and Central moments

Def: Moments
Let X be a random variable and k be a positive integer.
@ The expectation E(X¥) is called the k" moment of X

@ Let E(X) = p. The expectation E ((X — p)¥) is called the k"
central moment of X

@ The first moment is the mean: ;= E(X)
@ The first central moment is zero: E(X — p) = E(X) — E(X) =0
@ The second central moment is the variance: 02 = E (X — 11)?)
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Moments and Central moments

@ Symmetric distribution: If the p(d)f f(x) is symmetric with respect
to a point X, i.e. f(xp +9) = f(xo — 0) for all ¢

@ It the mean of a symmetric distribution exists, then it is the point of
symmetry.

@ [f the distribution of X is symmetric w.r.t. its mean x then
E (X — p)k) = 0 for k odd (if the central moment exists)

o Skewness: E ((X — p)3) /o3

< Symmetric pdf pdf for a skewed distribution
i
Mean ™ Mean
™ El
@
2 20
(%} [
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o o |
S S
2 3 4 5 6 7 8 0.0 0.5 1.0 15 2.0
X X
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Moment generating function

Def: Moment Generating Function
Let X be a random variable. The function

W(t) = E (e’x) teR

is called the moment generating function (m.g.f.) of X

Theorem 4.4.2

Let X be a random variables whose m.g.f. (t) is finite for t in an open
interval around zero. Then the nth moment of X is finite, for
n=1,2,...,and

dn

E(X™) = =20t

t=0
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Example

Let X ~ Gamma(n, 3). Then X has the pdf

’
(n—1)tp"

Find the m.g.f. of X and use it to find the mean and the variance of X.

f(x) = x"1e™*/8 for x >0
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Chapter 4 4.4 Moments

Properties of m.g.f.

Theorems 4.4.3 and 4.4.4:
® Yaxib(t) = ePyx(at)

@ Let Y =37, X; where Xi,..., X, are independent random
variables with m.g.f. ¢;(t) fori =1,...,n Then

Gy (t) =[] wilt)
i=1

Theorem 4.4.5: Uniqueness of the m.g.f.
Let X and Y be two random variables with m.g.f’s ¢)x(t) and ¢y ().

If the m.g.f.’s are finite and vy x(t) = ¥ y(t) for all values of t in an open
interval around zero, then X and Y have the same distribution.
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Example

@ Let X ~ N(u,c?). X has the pdf

f(x) = L exp (—(Xz_ag)z>

oVer

and the m.g.f. for the normal distribution is

2 2
b(t) = exp (;z,t+ t;)

Homework (not to turn in): Show that () is the m.g.f. of X.

@ Let Xj,..., X5 be independent Gaussian random variables with
means p; and variances o2.
What is the distribution of Y = Y7, X; ?
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