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Chapter 4 4.1 Expectation

Summarizing distributions

The distribution of X contains everything there is to know about
the probabilistic properties of X .
However, sometimes we want to summarize the distribution of X
in one or a few numbers

e.g. to more easily compare two or more distributions.
Examples of descriptive quantities:

Mean ( = Expectation )
Center of mass - weighted average

Median, Moments
Variance, Interquartile Range (IQR), Covariance, Correlation
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Chapter 4 4.1 Expectation

Definition of Expectation µ = E(X )

Def: Mean aka. Expected value

Let X be a random variable with p(d)f f (x). The mean, or expected
value of X , denoted E(X ), is defined as follows

X discrete:
E(X ) =

∑
All x

xf (x)

assuming the sum exists.
X continuous:

E(X ) =

∫ ∞
−∞

xf (x) dx

assuming the integral exists.

If the sum or integral does not exists we say that the expected value
does not exist.

The mean is often denoted with µ.
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Chapter 4 4.1 Expectation

Examples

Recall the distribution of Y = the number of heads in 3 tosses
(coin toss example from Lecture 4)

y 0 1 2 3
fY (y) 1

8
3
8

3
8

1
8

then
E(Y ) = 0

1
8

+ 1
3
8

+ 2
3
8

+ 3
1
8

=
12
8

=
3
2

= 1.5

Find E(X ) where X ∼ Binom(n,p). The pf of X is

f (x) =

(
n
x

)
px(1− p)n−x for x = 0,1, . . . ,n

Find E(X ) where X ∼ Uniform(a,b). The pdf of X is

f (x) =
1

b − a
for a ≤ x ≤ b
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Chapter 4 4.1 Expectation

Expectation of g(X )

Theorem 4.1.1
Let X be a random variable with p(d)f f (x) and g(x) be a real-valued
function. Then

X discrete:
E (g(X )) =

∑
All x

g(x)f (x)

X continuous:
E (g(X )) =

∫ ∞
−∞

g(x)f (x) dx

Example: Find E(X 2) where X ∼ Uniform(a,b).
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Chapter 4 4.1 Expectation

Expectation of g(X ,Y )

Theorem 4.1.2
Let X and Y be random variables with joint p(d)f f (x , y) and let g(x , y)
be a real-valued function. Then

X and Y discrete:

E (g(X ,Y )) =
∑

All x ,y

g(x , y)f (x , y)

X and Y continuous:

E (g(X ,Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x , y)f (x , y) dx dy

Example: Find E
(X+Y

2

)
where X and Y are independent and

X ∼ Uniform(a,b) and Y ∼ Uniform(c,d).
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Chapter 4 4.2 Properties of Expectations

Properties of Expectation

Theorems 4.2.1, 4.2.4 and 4.2.6:
E(aX + b) = aE(X ) + b for constants a and b.
Let X1, . . . ,Xn be n random variables, all with finite expectations
E(Xi), then

E

(
n∑

i=1

Xi

)
=

n∑
i=1

E(Xi)

Corollary: E (a1X1 + · · ·+ anXn + b) = a1E(X1) + · · ·+ anE(Xn) + b
for constants b,a1, . . . ,an.

Let X1, . . . ,Xn be n independent random variables, all with finite
expectations E(Xi), then

E

(
n∏

i=1

Xi

)
=

n∏
i=1

E(Xi)

CAREFUL !!! In general E(g(X )) 6= g(E(X )).
For example: E(X 2) 6= [E(X )]2
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Chapter 4 4.2 Properties of Expectations

Examples

If X1,X2, . . . ,Xn are i.i.d. Bernoulli(p) random variables then
Y =

∑n
i=1 Xi ∼ Binomial(n,p).

E(Xi) = 0× (1− p) + 1× p = p for i = 1, . . . ,n

⇒ E(Y ) = E

(
n∑

i=1

Xi

)
=

n∑
i=1

E(Xi) =
n∑

i=1

p = np

Note: i.i.d. stands for independent and identically distributed
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Chapter 4 4.3 Variance

Definition of Variance σ2 = Var(X )

Def: Variance
Let X be a random variable (discrete or continuous) with a finite mean
µ = E(X ). The Variance of X is defined as

Var(X ) = E
(
(X − µ)2

)
The standard deviation of X is defined as

√
Var(X )

We often use σ2 for variance and σ for standard deviation.

Theorem 4.3.1 – Another way of calculating variance
For any random variable X

Var(X ) = E(X 2)− [E(X )]2
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Chapter 4 4.3 Variance

Examples - calculating the variance

Recall the distribution of Y = the number of heads in 3 tosses
(coin toss example from Lecture 4)

y 0 1 2 3
fY (y) 1

8
3
8

3
8

1
8

We already found that µ = E(Y ) = 1.5. Then

Var(Y ) = (0− 1.5)2 1
8

+ (1− 1.5)2 3
8

+ (2− 1.5)2 3
8

+ (3− 1.5)2 1
8

= 0.75

Find Var(X ) where X ∼ Uniform(a,b)
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Chapter 4 4.3 Variance

Properties of the Variance

Theorems 4.3.2, 4.3.3, 4.3.4 and 4.3.5
Var(X ) ≥ 0 for any random variable X .

Var(X ) = 0 if and only if X is a constant,
i.e. P(X = c) = 1 for some constant c.

Var(aX + b) = a2Var(X )

If X1, . . . ,Xn are independent we have

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi)
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Chapter 4 4.3 Variance

Examples

If X1,X2, . . . ,Xn are i.i.d. Bernoulli(p) random variables then
Y =

∑n
i=1 Xi ∼ Binomial(n,p).

E(Xi) = p for i = 1, . . . ,n

E(X 2
i ) = 02 × (1− p) + 12 × p = p for i = 1, . . . ,n

⇒ Var(Xi) = E(X 2
i )− [E(Xi)]

2 = p − p2 = p(1− p)

⇒ Var(Y ) = Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) =
n∑

i=1

p(1− p)

= np(1− p)
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Chapter 4 4.3 Variance

Measures of location and scales

The mean is a measure of location, the variance is a measure of scale.
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Chapter 4 4.4 Moments

Moments and Central moments

Def: Moments
Let X be a random variable and k be a positive integer.

The expectation E(X k ) is called the k th moment of X
Let E(X ) = µ. The expectation E

(
(X − µ)k) is called the k th

central moment of X

The first moment is the mean: µ = E(X 1)

The first central moment is zero: E(X − µ) = E(X )− E(X ) = 0
The second central moment is the variance: σ2 = E

(
(X − µ)2)
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Chapter 4 4.4 Moments

Moments and Central moments

Symmetric distribution: If the p(d)f f (x) is symmetric with respect
to a point x0, i.e. f (x0 + δ) = f (x0 − δ) for all δ
It the mean of a symmetric distribution exists, then it is the point of
symmetry.
If the distribution of X is symmetric w.r.t. its mean µ then
E
(
(X − µ)k) = 0 for k odd (if the central moment exists)

Skewness: E
(
(X − µ)3) /σ3

2 3 4 5 6 7 8

0.
0

0.
1

0.
2

0.
3

0.
4

Symmetric pdf

x

D
en

si
ty

Mean

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

pdf for a skewed distribution

x

D
en

si
ty

Mean

STA 611 (Lecture 06) Expectation Sep 13, 2012 15 / 19



Chapter 4 4.4 Moments

Moment generating function

Def: Moment Generating Function

Let X be a random variable. The function

ψ(t) = E
(

etX
)

t ∈ R

is called the moment generating function (m.g.f.) of X

Theorem 4.4.2
Let X be a random variables whose m.g.f. ψ(t) is finite for t in an open
interval around zero. Then the nth moment of X is finite, for
n = 1,2, . . ., and

E(X n) =
dn

dtnψ(t)
∣∣∣∣
t=0
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Chapter 4 4.4 Moments

Example

Let X ∼ Gamma(n, β). Then X has the pdf

f (x) =
1

(n − 1)!βn xn−1e−x/β for x > 0

Find the m.g.f. of X and use it to find the mean and the variance of X .
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Chapter 4 4.4 Moments

Properties of m.g.f.

Theorems 4.4.3 and 4.4.4:
ψaX+b(t) = ebtψX (at)
Let Y =

∑n
i=1 Xi where X1, . . . ,Xn are independent random

variables with m.g.f. ψi(t) for i = 1, . . . ,n Then

ψY (t) =
n∏

i=1

ψi(t)

Theorem 4.4.5: Uniqueness of the m.g.f.

Let X and Y be two random variables with m.g.f.’s ψX (t) and ψY (t).

If the m.g.f.’s are finite and ψX (t) = ψY (t) for all values of t in an open
interval around zero, then X and Y have the same distribution.
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Chapter 4 4.4 Moments

Example

Let X ∼ N(µ, σ2). X has the pdf

f (x) =
1

σ
√

2π
exp

(
−(x − µ)2

2σ2

)
and the m.g.f. for the normal distribution is

ψ(t) = exp
(
µt +

t2σ2

2

)
Homework (not to turn in): Show that ψ(t) is the m.g.f. of X .
Let X1, . . . ,X2 be independent Gaussian random variables with
means µi and variances σ2

i .
What is the distribution of Y =

∑n
i=1 Xi ?
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