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Chapter 4 — continued 4.5 The Mean and the Median

Median — measure of center

Def: Median
Let X be a random variable. Every number m that satisfies

P(X<m)>05 and P(X>m)>0.5

is called a median of the distribution of X.

@ Recall the distribution of Y = the number of heads in 3 tosses
(coin toss example from Lecture 4)
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Both 1 and 2 are medians since
P(X<1)=1/2 and P(X>1)=7/8>05
and P(X<2)=7/8>05 and P(X>2)=1/2

In fact all numbers in the interval [1,2] are medians.
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Example 1: Median of the exponential distribution

Let X ~ Expo(A). The pdf of X is
f(x)=Xe™™, x>0

Find the median of X
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Chapter 4 — continued 4.5 The Mean and the Median

Median — measure of center

@ For a symmetric distribution: mean = median

@ For a skewed distribution either
@ mean < median (left skewed) or mean > median (right skewed)

pdf for a right skewed dist.

pdf for a left skewed dist.
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Mean vs. median

Both mean and median can be used as a mesure of center
@ Median exists for every distribution but the mean may not exist

@ For a skewed distribution the mean is heavily influenced by the tail
(“outliers”) but the median is not

Mean and Median can be used as estimates of a random variable
@ The mean minimizes the mean squared error (Theorem 4.5.2)
@ The median minimized the mean absolute error (Theorem 4.5.3)
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Covariance

Def: Covariance

Let X and Y be random variables with finite means ux and py. The
covariance of X and Y is defined as

Cov(X,Y) = E((X — ux)(Y — pny))

if the expectation exists.

@ Another way of calculating the covariance:
Cov(X,Y)=E(XY)—- E(X)E(Y)

@ A measure of how much X and Y depend (linearly) on each other
@ Magnitude of Cov(X, Y) depends on the magnitudes of X and Y
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Correlation

Def: Correlation

Let X and Y be random variables with finite variances 0% and o2. The
correlation of X and Y is defined as

Cor(X,Y)

Cor(X. ) = p(X. ¥) = =2 =

o —1<p(X,Y) <1
e This is shown by using the Schwarz Inequality:

(E(UV))? < E(UP)E(V?)

@ Also a measure of how much X and Y depend (linearly) on each
other

@ But the correlation is independent on the scale of X and Y
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Chapter 4 — continued 4.6 Covariance and Correlation

Example 2: Bivariate Normal

Joint pdf of two correlated Gaussian random variables:

Correlation = 0 Correlation = 0.5 Correlation = 0.9 Correlation = -0.9

Contours of the joint pdf of two correlated Gaussian random variables:

Correlation = 0 Correlation = 0.5 Correlation = 0.9 Correlation = -0.9
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Example 3: Calculating Covariance and Correlation

Recall from Lecture 4 the joint pdf for random
variables X and Y:

f(x,y)=8xy forO<y<x<1

We have already established that the marginal pdf’s are

fx(x) = 4x3 for0 < x <1
fy(y) =4y —4y® for0<y <1

Find Cov(X, Y) and p(X, Y).
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Chapter 4 — continued 4.6 Covariance and Correlation

Properties of covariance and correlation

Theorem

If r.v. X and Y have finite variances, i.e. 0% < oo and 0%, < oo, then the
covariance Cov(X, Y) exists.

Theorem 4.6.4
If X and Y are independent random variables with finite variances then

Cov(X,Y)=p(X,Y)=0

@ Careful: The oposite is not true, i.e. two random variables can be
uncorrelated without being independent.
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Example 4: Zero covariance does not imply
independence

@ Let X and Z be independent random variables where
X ~ Uniform(—1,1) and Z ~ Uniform(0, 0.1).

@ Let Y = X2+ Z. Then Y and X are clearly not independent.
@ Show that Cov(X,Y) =0
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Properties of covariance and correlation

Other properties:

@ If Yis a linear function of X then X and Y are perfectly correlated,
i.e. p(X,Y)=+1

@ Cov(X, X) = Var(X)
@ Cov(aX + b,cY + d) = acCov(X, Y) (Homework, Ex. 4.6.5)
@ Var(aX + bY + ¢) = @Var(X) + b?*Var(Y) + 2abCov(X, Y)

Note that the Cov part is zero if X and Y are independent.
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Conditional Expectation

Def: Conditional Mean

Let X and Y be random variables where Y has a finite mean. The
conditional expectation of Y given X = x, denoted E(Y|x) or
E(Y|X = x), is the mean of the conditional distribution of Y given
X=x

More explicitly:
E(Y|x) :/ yf(y|x)dy if Y is continuous

E(Y|x) =) yf(ylx) if Y is discrete
Al y

@ E(Y]x) is a function of x

@ E(Y|X) is arandom variable
(i.e. a function of the random variable X)
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Conditional Variance

Def: Conditional Variance

Let X and Y be random variables. The conditional variance of Y given
X = x, denoted Var(Y|x) or Var(Y|X = x), is the variance of the
conditional distribution of Y given X = x:

Var(Y|x) = E ((Y - E(Y|x))2( x)

@ Var(Y|x) is a function of x
@ Var(Y|X) is a random variable

STA 611 (Lecture 07) Expectation Sep 18, 2012 14/18



Example 5: Calculating conditional mean and variance

Consider again the joint pdf for random variables
XandY:

f(x,y)=8xy forO<y<x<1

We have already established that the marginal pdf’s are

fx(x) = 4x3 for0 < x <1
fy(y) =4y —4y® for0<y <1

Find E(Y|X = 0.5) and Var(Y|X = 0.5)
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Chapter 4 — continued 4.7 Conditional Expectation

Law of total probability for E and Var

Theorem 4.7.1: Law of total probability for Expectations
Let X and Y be random variables such that Y has finite mean. Then

E(E(Y[X)) = E(Y)

Theorem 4.7.4: Law of total probability for Variances
Let X and Y be random variables. Then

Var(Y) = E (Var(Y|X)) + Var (E(Y|X))
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Chapter 4 — continued 4.7 Conditional Expectation

Example: Hierarchical Model
Using laws of total probability

Screening for defective Halloween candy among n pieces

@ My daughter screens all the n items, the probability that an item
passes her screening is px.

© | screen what passed my daughters screening and the probability
that a candy passes my screening is py

How many candies can we expect pass this double screening?

@ X = number of candies that pass first screening.
X ~ Binomial(n, px)

@ Y = number of candies that pass second screening.
Y|X = x ~ Binomial(x, py)

Find E(Y) and Var(Y)
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Chapter 4 — continued

END OF CHAPTER 4
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