
Chapter 4 – continued

Chapter 4 sections

4.1 Expectation
4.2 Properties of Expectations
4.3 Variance
4.4 Moments
4.5 The Mean and the Median
4.6 Covariance and Correlation
4.7 Conditional Expectation
SKIP: 4.8 Utility
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Chapter 4 – continued 4.5 The Mean and the Median

Median – measure of center

Def: Median
Let X be a random variable. Every number m that satisfies

P(X ≤ m) ≥ 0.5 and P(X ≥ m) ≥ 0.5

is called a median of the distribution of X .

Recall the distribution of Y = the number of heads in 3 tosses
(coin toss example from Lecture 4)
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Both 1 and 2 are medians since

P(X ≤ 1) = 1/2 and P(X ≥ 1) = 7/8 ≥ 0.5
and P(X ≤ 2) = 7/8 ≥ 0.5 and P(X ≥ 2) = 1/2

In fact all numbers in the interval [1,2] are medians.
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Chapter 4 – continued 4.5 The Mean and the Median

Example 1: Median of the exponential distribution

Let X ∼ Expo(λ). The pdf of X is

f (x) = λe−λx , x > 0

Find the median of X

STA 611 (Lecture 07) Expectation Sep 18, 2012 3 / 18



Chapter 4 – continued 4.5 The Mean and the Median

Median – measure of center

For a symmetric distribution: mean = median

For a skewed distribution either
mean < median (left skewed) or mean > median (right skewed)
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Chapter 4 – continued 4.5 The Mean and the Median

Mean vs. median

Both mean and median can be used as a mesure of center
Median exists for every distribution but the mean may not exist
For a skewed distribution the mean is heavily influenced by the tail
(“outliers”) but the median is not

Mean and Median can be used as estimates of a random variable
The mean minimizes the mean squared error (Theorem 4.5.2)
The median minimized the mean absolute error (Theorem 4.5.3)
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Chapter 4 – continued 4.6 Covariance and Correlation

Covariance

Def: Covariance
Let X and Y be random variables with finite means µX and µY . The
covariance of X and Y is defined as

Cov(X ,Y ) = E ((X − µX )(Y − µY ))

if the expectation exists.

Another way of calculating the covariance:

Cov(X ,Y ) = E(XY )− E(X )E(Y )

A measure of how much X and Y depend (linearly) on each other
Magnitude of Cov(X ,Y ) depends on the magnitudes of X and Y
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Chapter 4 – continued 4.6 Covariance and Correlation

Correlation

Def: Correlation

Let X and Y be random variables with finite variances σ2
X and σ2

Y . The
correlation of X and Y is defined as

Cor(X ,Y ) = ρ(X ,Y ) =
Cor(X ,Y )

σXσY

−1 ≤ ρ(X ,Y ) ≤ 1
This is shown by using the Schwarz Inequality :

(E(UV ))2 ≤ E(U2)E(V 2)

Also a measure of how much X and Y depend (linearly) on each
other
But the correlation is independent on the scale of X and Y
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Chapter 4 – continued 4.6 Covariance and Correlation

Example 2: Bivariate Normal

Joint pdf of two correlated Gaussian random variables:

Correlation =  0 Correlation =  0.5 Correlation =  0.9 Correlation =  −0.9

Contours of the joint pdf of two correlated Gaussian random variables:

−3 −2 −1 0 1 2 3

−
3

−
1

0
1

2
3

Correlation =  0

−3 −2 −1 0 1 2 3

−
3

−
1

0
1

2
3

Correlation =  0.5

−3 −2 −1 0 1 2 3

−
3

−
1

0
1

2
3

Correlation =  0.9

−3 −2 −1 0 1 2 3

−
3

−
1

0
1

2
3

Correlation =  −0.9

STA 611 (Lecture 07) Expectation Sep 18, 2012 8 / 18



Chapter 4 – continued 4.6 Covariance and Correlation

Example 3: Calculating Covariance and Correlation

Recall from Lecture 4 the joint pdf for random
variables X and Y :

f (x , y) = 8xy for 0 < y < x < 1
x

y

z

We have already established that the marginal pdf’s are

fX (x) = 4x3 for 0 < x < 1

fY (y) = 4y − 4y3 for 0 < y < 1

Find Cov(X ,Y ) and ρ(X ,Y ).

STA 611 (Lecture 07) Expectation Sep 18, 2012 9 / 18



Chapter 4 – continued 4.6 Covariance and Correlation

Properties of covariance and correlation

Theorem

If r.v. X and Y have finite variances, i.e. σ2
X <∞ and σ2

Y <∞, then the
covariance Cov(X ,Y ) exists.

Theorem 4.6.4
If X and Y are independent random variables with finite variances then

Cov(X ,Y ) = ρ(X ,Y ) = 0

Careful: The oposite is not true, i.e. two random variables can be
uncorrelated without being independent.
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Chapter 4 – continued 4.6 Covariance and Correlation

Example 4: Zero covariance does not imply
independence

Let X and Z be independent random variables where
X ∼ Uniform(−1,1) and Z ∼ Uniform(0,0.1).

Let Y = X 2 + Z . Then Y and X are clearly not independent.

Show that Cov(X ,Y ) = 0
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Chapter 4 – continued 4.6 Covariance and Correlation

Properties of covariance and correlation

Other properties:
If Y is a linear function of X then X and Y are perfectly correlated,
i.e. ρ(X ,Y ) = ±1

Cov(X ,X ) = Var(X )

Cov(aX + b, cY + d) = acCov(X ,Y ) (Homework, Ex. 4.6.5)

Var(aX + bY + c) = a2Var(X ) + b2Var(Y ) + 2abCov(X ,Y )

Note that the Cov part is zero if X and Y are independent.
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Chapter 4 – continued 4.7 Conditional Expectation

Conditional Expectation

Def: Conditional Mean
Let X and Y be random variables where Y has a finite mean. The
conditional expectation of Y given X = x , denoted E(Y |x) or
E(Y |X = x), is the mean of the conditional distribution of Y given
X = x

More explicitly:

E(Y |x) =

∫ ∞
−∞

yf (y |x)dy if Y is continuous

E(Y |x) =
∑
All y

yf (y |x) if Y is discrete

E(Y |x) is a function of x
E(Y |X ) is a random variable
(i.e. a function of the random variable X )
STA 611 (Lecture 07) Expectation Sep 18, 2012 13 / 18



Chapter 4 – continued 4.7 Conditional Expectation

Conditional Variance

Def: Conditional Variance
Let X and Y be random variables. The conditional variance of Y given
X = x , denoted Var(Y |x) or Var(Y |X = x), is the variance of the
conditional distribution of Y given X = x :

Var(Y |x) = E
(

(Y − E(Y |x))2
∣∣∣ x)

Var(Y |x) is a function of x
Var(Y |X ) is a random variable
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Chapter 4 – continued 4.7 Conditional Expectation

Example 5: Calculating conditional mean and variance

Consider again the joint pdf for random variables
X and Y :

f (x , y) = 8xy for 0 < y < x < 1
x

y

z

We have already established that the marginal pdf’s are

fX (x) = 4x3 for 0 < x < 1

fY (y) = 4y − 4y3 for 0 < y < 1

Find E(Y |X = 0.5) and Var(Y |X = 0.5)
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Chapter 4 – continued 4.7 Conditional Expectation

Law of total probability for E and Var

Theorem 4.7.1: Law of total probability for Expectations
Let X and Y be random variables such that Y has finite mean. Then

E (E(Y |X )) = E(Y )

Theorem 4.7.4: Law of total probability for Variances
Let X and Y be random variables. Then

Var(Y ) = E (Var(Y |X )) + Var (E(Y |X ))
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Chapter 4 – continued 4.7 Conditional Expectation

Example: Hierarchical Model
Using laws of total probability

Screening for defective Halloween candy among n pieces
1 My daughter screens all the n items, the probability that an item

passes her screening is pX .
2 I screen what passed my daughters screening and the probability

that a candy passes my screening is pY

How many candies can we expect pass this double screening?
X = number of candies that pass first screening.
X ∼ Binomial(n,pX )

Y = number of candies that pass second screening.
Y |X = x ∼ Binomial(x ,pY )

Find E(Y ) and Var(Y )
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END OF CHAPTER 4
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