
Chapter 5

Chapter 5 sections

Discrete univariate distributions:
5.2 Bernoulli and Binomial distributions
Just skim 5.3 Hypergeometric distributions
5.4 Poisson distributions
Just skim 5.5 Negative Binomial distributions

Continuous univariate distributions:
5.6 Normal distributions
5.7 Gamma distributions
Just skim 5.8 Beta distributions

Multivariate distributions
Just skim 5.9 Multinomial distributions
5.10 Bivariate normal distributions
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Chapter 5 5.1 Introduction

Families of distributions

We will study a few useful families of distributions. That includes
identifying some or all of the following

pf /pdf and cdf - new notation: f (x | parameters )

Mean, variance and the m.g.f. ψ(t)
Parameter space
Special features and connections to other distributions,
approximations
Reasoning behind a distribution

Some distributions will have a natural justification for a certain kind of
experiment

Other distributions are useful as a model for the uncertainty in an
experiment

All models are wrong, but some are useful – George Box
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Chapter 5 5.2 Bernoulli and Binomial distributions

Bernoulli distributions

Def: Bernoulli distributions – Bernoulli(p)

A r.v. X has the Bernoulli distribution with parameter p if P(X = 1) = p
and P(X = 0) = 1− p. The pf of X is

f (x |p) =

{
px(1− p)1−x for x = 0,1
0 otherwise

Parameter space: p ∈ [0,1]

In an experiment with only two possible outcomes, “success” and
“failure”, let X = number successes. Then the distribution of X is
Bernoulli(p) where p is the probability of success.
E(X ) = p, Var(X ) = p(1− p) and ψ(t) = E(etX ) = pet + (1− p)

The cdf is F (x |p) =

8<:
0 for x < 0
1− p for 0 ≤ x < 1
1 for x ≥ 1
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Chapter 5 5.2 Bernoulli and Binomial distributions

Binomial distributions

Def: Binomial distributions – Binomial(n,p)

A r.v. X has the Binomial distribution with parameters n and p if X has
the pf

f (x |n,p) =

{ (n
x

)
px(1− p)n−x for x = 0,1, . . . ,n

0 otherwise

Parameter space: n is a positive integer and p ∈ [0,1]

If X is the number of “successes” in n independent tries where prob. of
success is p each time, then X ∼ Binomial(n,p)

Theorem 5.2.1
If X1,X2, . . . ,Xn form n Bernoulli trials with parameter p
(i.e. are i.i.d. Bernoulli(p)) then X = X1 + · · ·+ Xn ∼ Binomial(n,p)
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Chapter 5 5.2 Bernoulli and Binomial distributions

Binomial distributions

Let X ∼ Binomial(n,p)

E(X ) = np
Var(X ) = np(1− p)

To find the m.g.f. of X write X = X1 + · · ·+ Xn where Xi ’s are
i.i.d. Bernoulli(p). Then ψi(t) = pet + 1− p and we get

ψ(t) =
n∏

i=1

ψi(t) =
n∏

i=1

(
pet + 1− p

)
= (pet + 1− p)n

cdf: F (x |n,p) =
∑x

t=1
(n

t

)
pt(1− p)n−t = yikes!

Theorem 5.2.2
If Xi ∼ Binomial(ni ,p), i = 1, . . . , k and the Xi ’s are independent, then
X = X1 + · · ·+ Xk ∼ Binomial(

∑k
i=1 ni ,p)
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Chapter 5 5.2 Bernoulli and Binomial distributions

Example: Blood testing (Example 5.2.7)

The setup:
1000 people need to be tested for a disease that affects 0.2% of
all people.
The test is guaranteed to detect the disease if it is present in a
blood sample.
Let Xj = 1 if person j has the disease and Xj = 0 if not.
Then Xj has a Bernoulli distribution.
Assume that Xj ’s are independent and that

P(Xj = 1) = p = 0.002 for all j

Then X =
∑1000

j=1 Xj ∼ Binomial(1000,0.002) and the expected
number of people that have the disease is 1000× 0.002 = 2

Testing 1000 samples is expensive, so consider a more effective
scenario.
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Chapter 5 5.2 Bernoulli and Binomial distributions

Example: Blood testing (Example 5.2.7) – continued

Divide the people into 10 groups of 100.
For each group take a portion of each of the 100 blood samples
and combine into one sample.
Then test the combined blood samples (10 tests).

If all of these tests are negative then none of the 1000 people have
the disease. Total number of tests needed: 10
If one of these tests are positive then we test each of the 100
people in that group. Total number of tests needed: 110
If two of these tests are positive then we test each of the 200
people in these groups. Total number of tests needed: 210
etc.
If all of the 10 tests are positive we end up having to do 1010 tests

What is the expected number of tests needed?
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Chapter 5 5.2 Bernoulli and Binomial distributions

Example: Blood testing (Example 5.2.7) – continued

What is the expected number of tests needed?
Let Zi = number of people in group i that have the disease,
i = 1, . . . ,10.
Then Zi ∼ Binomial(100,0.002)

Let Yi = 1 if test for group i is positive and Yi = 0 otherwise
Then Yi is a Bernoulli(p) r.v. where

p = P(Yi = 1) = P(Zi > 0) = 1− P(Zi = 0)

= 1−
(

100
0

)
0.0020(1− 0.002)100 = 1− 0.998100 = 0.181

Let Y = Y1 + · · ·+ Y10 = the number of groups where every
individual has to be tested.
Then Y ∼ Binomial(10,0.181)
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Chapter 5 5.2 Bernoulli and Binomial distributions

Example: Blood testing (Example 5.2.7) – continued

The expected number of tests we need is 10 + 100Y and

E(10 + 100Y ) = 10 + 100E(Y ) = 10 + 100(10× 0.181) = 191

much better than having to test 1000 blood samples!

What is the probability of the worst case scenario, i.e. that we have to
do 1010 tests?

P(Y = 10) =

(
10
10

)
0.181100.8190 ≈ 3.8× 10−8
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Chapter 5 5.3 Hypergeometric distributions

Hypergeometric distributions

Def: Hypergeometric distributions
A random variable X has the Hypergeometric distribution with
parameters N, M and n if it has the pf

f (x |N,M,n) =

(N
x

)( M
n−x

)(N+M
n

)
Parameter space: N, M and n are nonnegative integers with

n ≤ N + M

Reasoning:
Say we have a finite population with N items of type I and M items
of type II.
Let X be the number of items of type I when we take n samples
without replacement from that population
Then X has the hypergeometric distribution
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Chapter 5 5.3 Hypergeometric distributions

Hypergeometric distributions

Binomial: Sampling with replacement
(effectively infinite population)
Hypergeometric: Sample without replacement from a finite
population
You can also think of the Hypergeometric distribution as a sum of
dependent Bernoulli trials

In some cases we can use the Binomial distribution instead of the
Hypergeometric:

Theorem 5.3.4: If the samples size n is much smaller than the
total population N + M then the Hypergeometric distribution with
parameters N, M and n will be nearly the same as the Binomial
distribution with parameters

n and p =
N

N + M
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Chapter 5 5.4 Poisson distributions

Poisson distributions

Def: Poisson distributions – Poisson(λ)

A random variable X has the Poisson distribution with mean λ if it has
the pf

f (x |λ) =

{
e−λλx

x! for x = 0,1,2 . . .
0 otherwise

Parameter space: λ > 0

Show that

f (x |λ) is a pf
E(X ) = λ

Var(X ) = λ

ψ(t) = eλ(et−1)

The cdf does not have a particular form:
F (x |λ) =

∑x
k=0

e−λλx

x! = yikes.
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Chapter 5 5.4 Poisson distributions

Why Poisson?

The Poisson distribution is useful for modeling uncertainty in
counts / arrivals
Examples:

How many calls arrive at a switch board in one hour?
How many busses pass while you wait at the bus stop for 10 min?
How many bird nests are there in a certain area?

Under certain conditions (Poisson postulates) the Poisson
distribution can be shown to be the distribution of the number of
arrivals (Poisson process). However, the Poisson distribution is
often used as a model for uncertainty of counts in other types of
experiments.
The Poisson distribution can also be used as an approximation to
the Binomial(n,p) distribution when n is large and p is small.
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Chapter 5 5.4 Poisson distributions

Poisson Postulates

For t ≥ 0, let Xt be a random variable with possible values in N0
(Think: Xt = number of arrivals from time 0 to time t)

(i) Start with no arrivals: X0 = 0

(ii) Arrivals in disjoint time periods are ind.: Xs and Xt − Xs ind. if s < t

(iii) Number of arrivals depends only on period length:

Xs and Xt+s − Xt are identically distributed

(iv) Arrival probability is proportional to period length, if length is small:

lim
t→0

P(Xt = 1)

t
= λ

(v) No simultaneous arrivals: limt→0
P(Xt >1)

t = 0

If (i) - (v) hold then for any integer n

P(Xt = n) = e−λt (λt)n

n!
that is, Xt ∼ Poisson(λt)

Can be defined in terms of spatial areas too.
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Chapter 5 5.4 Poisson distributions

Properties of the Poisson Distributions

Useful recursive property: P(X = x) = λ
x P(X = x − 1) for x ≥ 1

Theorem 5.4.4: Sum of Poissons is a Poisson
If X1, . . . ,Xk are independent r.v. and Xi ∼ Poisson(λi) for all i , then

X1 + · · ·+ Xk ∼ Poisson

(
k∑

i=1

λi

)

Theorem 5.4.5: Approximation to Binomial

Let Xn ∼ Binomial(n,pn), where 0 < pn < 1 for all n and {pn}∞n=1 is a
sequence so that limn→∞ npn = λ. Then

lim
n→∞

fXn(x |n,pn) = e−λλ
x

x!
= f Poisson(x |λ)

for all x = 0,1,2, . . .
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Chapter 5 5.4 Poisson distributions

Example: Poisson as approximation to Binomial
Recall the disease testing example. We had

X =
1000∑
i=1

Xi ∼ Binomial(1000,0.002) and

Y ∼ Binomial(100,0.181)
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Chapter 5 5.5 Negative Binomial distributions

Geometric distributions

Def: Geometric distributions Geometric(p)

A random variable X has the Geometric distribution with parameter p if
it has the pf

f (x |r ,p) =

{
p(1− p)x for x = 0,1,2 . . .
0 otherwise

Parameter space: 0 < p < 1

Say we have an infinite sequence of Bernoulli trials with
parameter p
X = number of “failures” before the first “success” . Then
X ∼ Geometric(p)
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Chapter 5 5.5 Negative Binomial distributions

Negative Binomial distributions

Def: Negative Binomial distributions – NegBinomial(r ,p)

A random variable X has the Negative Binomial distribution with
parameters r and p if it has the pf

f (x |r ,p) =

{ (r+x−1
x

)
pr (1− p)x for x = 0,1,2 . . .

0 otherwise

Parameter space: 0 < p < 1 and r positive integer.

Say we have an infinite sequence of Bernoulli trials with
parameter p
X = number of “failures” before the r th “success”. Then
X ∼ NegBinomial(r ,p)

Geometric(p) = NegBinomial(1,p)

Theorem 5.5.2: If X1, . . . ,Xr are i.i.d. Geometric(p) then
X = X1 + · · ·+ Xr ∼ NegBinomial(r ,p)
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