
Chapter 5 – continued

Chapter 5 sections

Discrete univariate distributions:
5.2 Bernoulli and Binomial distributions
Just skim 5.3 Hypergeometric distributions
5.4 Poisson distributions
Just skim 5.5 Negative Binomial distributions

Continuous univariate distributions:
5.6 Normal distributions
5.7 Gamma distributions
Just skim 5.8 Beta distributions

Multivariate distributions
Just skim 5.9 Multinomial distributions
5.10 Bivariate normal distributions
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Chapter 5 – continued 5.6 Normal distributions

Why Normal?
Works well in practice. Many physical experiments
have distributions that are approximately normal
Central Limit Theorem: Sum of many i.i.d. random
variables are approximately normally distributed
Mathematically convenient – especially the
multivariate normal distribution.

Can explicitly obtain the distribution of many
functions of a normally distributed random variable
have.
Marginal and conditional distributions of a
multivariate normal are also normal (multivariate or
univariate).

Developed by Gauss and then Laplace in the early
1800s
Also known at the Gaussian distributions

Gauss

Laplace
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Chapter 5 – continued 5.6 Normal distributions

Normal distributions

Def: Normal distributions – N(µ, σ2)

A continuous r.v. X has the normal distribution with mean µ and
variance σ2 if it has the pdf

f (x |µ, σ2) =
1√

2π σ
exp

(
−(x − µ)2

2σ2

)
, −∞ < x <∞

Parameter space: µ ∈ R and σ2 > 0

Show:
ψ(t) = exp

(
µt + 1

2σ
2t2)

E(X ) = µ

Var(X ) = σ2
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Chapter 5 – continued 5.6 Normal distributions

The Bell curve
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Chapter 5 – continued 5.6 Normal distributions

Standard normal

Standard normal distribution: N(0,1)

The normal distribution with µ = 1 and σ2 = 1 is called the standard
normal distribution and the pdf and cdf are denoted as φ(x) and Φ(x)

The cdf for a normal distribution cannot be expressed in closed
form and is evaluated using numerical approximations.

Φ(x) is tabulated in the back of the book. Many calculators and
programs such as R, Matlab, Excel etc. can calculate Φ(x).

Φ(−x) = 1− Φ(x)

Φ−1(p) = −Φ−1(1− p)
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Chapter 5 – continued 5.6 Normal distributions

Properties of the normal distributions

Theorem 5.6.4: Linear transformation of a normal is still normal

If X ∼ N(µ, σ2) and Y = aX + b where a and b are constants and
a 6= 0 then

Y ∼ N(aµ+ b,a2σ2)

Let F be the cdf of X , where X ∼ N(µ, σ2). Then

F (x) = Φ

(
x − µ
σ

)
and

F−1(p) = µ+ σΦ−1(p)
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Chapter 5 – continued 5.6 Normal distributions

Example: Measured Voltage

Suppose the measured voltage, X , in a certain electric circuit has the
normal distribution with mean 120 and standard deviation 2

1 What is the probability that the measured voltage is between 118
and 122?

2 Below what value will 95% of the measurements be?
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Chapter 5 – continued 5.6 Normal distributions

Properties of the normal distributions

Theorem 5.6.7: Linear combination of ind. normals is a normal

Let X1, . . . ,Xk be independent r.v. and Xi ∼ N(µi , σ
2
i ) for i = 1, . . . , k .

Then
X1 + · · ·+ Xk ∼ N

(
µ1 + · · ·+ µk , σ

2
1 + · · ·+ σ2

k

)
Also, if a1, . . . ,ak and b are constants where at least one ai is not zero:

a1X1 + · · ·+ akXk + b ∼ N

(
b +

k∑
i=1

µi ,

k∑
i=1

a2
i σ

2
i

)

In particular:
The sample mean: X n = 1

n
∑n

i=1 Xi

If X1, . . . ,Xn are a random sample from a N(µ, σ2), what is the
distribution of the sample mean?
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Chapter 5 – continued 5.6 Normal distributions

Example: Measured voltage – continued

Suppose the measured voltage, X , in a certain electric circuit has the
normal distribution with mean 120 and standard deviation 2.

If three independent measurements of the voltage are made, what
is the probability that the sample mean X 3 will lie between 118
and 120?
Find x that satisfies P(|X 3 − 120| ≤ x) = 0.95
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Chapter 5 – continued 5.6 Normal distributions

Area under the curve
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Chapter 5 – continued 5.6 Normal distributions

Lognormal distributions

Def: Lognormal distributions

If log(X ) ∼ N(µ, σ2) then we say that X has the Lognormal distribution
with parameters µ and σ2.

The support of the lognormal
distribution is (0,∞).
Often used to model time
before failure.
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Example:
Let X and Y be independent random variables such that
log(X ) ∼ N(1.6,4.5) and log(Y ) ∼ N(3,6). What is the
distribution of the product XY?
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Chapter 5 – continued 5.10 Bivariate normal distributions

Bivariate normal distributions

Def: Bivariate normal
Two continuous r.v. X1 and X2 have the bivariate normal distribution
with means µ1 and µ2, variances σ2

1 and σ2
2 and correlation ρ if they

have the joint pdf

f (x1, x2) =
1

2π(1 − ρ)1/2σ1σ2

× exp
„
−1

2

»
(x1 − µ1)

2

σ2
1

− 2ρ
„

x1 − µ1

σ1

« „
x2 − µ2

σ2

«
+

(x2 − µ2)
2

σ2
2

–«
(1)

Parameter space: µi ∈ R, σ2
i > 0 for i = 1,2 and −1 ≤ ρ ≤ 1
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Chapter 5 – continued 5.10 Bivariate normal distributions

Bivariate normal pdf

Bivariate normal pdf with different ρ:
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Chapter 5 – continued 5.10 Bivariate normal distributions

Bivariate normal as linear combination

Theorem 5.10.1: Bivariate normal from two ind. standard normals
Let Z1 ∼ N(0,1) and Z2 ∼ N(0,1) be independent.
Let µi ∈ R, σ2

i > 0 for i = 1,2 and −1 ≤ ρ ≤ 1 and let

X1 = σ1Z1 + µ1

X2 = σ2(ρZ1 +
√

1− ρ2Z2) + µ2 (2)

Then the joint distribution of X1 and X2 is bivariate normal with
parameters µ1, µ2, σ2

1, σ2
1 and ρ

Theorem 5.10.2 (part 1) – the other way
Let X1 and X2 have the pdf in (1). Then there exist independent
standard normal r.v. Z1 and Z2 so that (2) holds.
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Chapter 5 – continued 5.10 Bivariate normal distributions

Properties of a bivariate normal

Theorem 5.10.2 (part 2)
Let X1 and X2 have the pdf in (1). Then the marginal distributions are

X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2)

And the correlation between X1 and X2 is ρ

Theorem 5.10.4: The conditional is normal
Let X1 and X2 have the pdf in (1). Then the conditional distribution of
X2 given that X1 = x1 is (univariate) normal with

E(X2|X1 = x1) = µ2 + ρσ2
(x1 − µ1)

σ1
and

Var(X2|X1 = x1) = (1− ρ2)σ2
2
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Chapter 5 – continued 5.10 Bivariate normal distributions

Properties of a bivariate normal

Theorem 5.10.3: Uncorrelated⇒ Independent
Let X1 and X2 have the bivariate normal distribution. Then X1 and X2
are independent if and only if they are uncorrelated.

Only holds for the multivariate normal distribution
One of the very convenient properties of the normal distribution

Theorem 5.10.5: Linear combinations are normal
Let X1 and X2 have the pdf in (1) and let a1, a2 and b be constants.
Then Y = a1X1 + a2X2 + b is normally distributed with

E(Y ) = a1µ1 + a2µ2 + b and

Var(Y ) = a2
1σ

2
1 + a2

2σ
2
2 + 2a1a2ρσ1σ2

This extends what we already had for independent normals
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Chapter 5 – continued 5.10 Bivariate normal distributions

Example

Let X1 and X2 have the bivariate normal
distribution with means µ1 = 3, µ2 = 5,
variances σ2

1 = 4, σ2
2 = 9 and correlation

ρ = 0.6.
a) Find the distribution of X2 − 2X1

b) What is expected value of X2, given that
we observed X1 = 2?

c) What is the probability that X1 > X2?
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Chapter 5 – continued 5.10 Bivariate normal distributions

Multivariate normal – Matrix notation

The pdf of an n-dimensional normal distribution, X ∼ N(µ,Σ):

f (x) =
1

(2π)n/2|Σ|1/2 exp
{
−1

2
(x− µ)ᵀΣ−1(x− µ)

}
where

µ =


µ1
µ2
...
µn

 , x =


x1
x2
...

xn

 and Σ =


σ2

1 σ1,2 σ1,3 · · · σ1,n
σ2,1 σ2

2 σ2,3 · · · σ2,n
σ3,1 σ3,2 σ2

3 · · · σ3,n
...

...
...

. . .
...

σn,1 σn,2 σn,3 · · · σ2
n


µ is the mean vector and Σ is called the variance-covariance matrix.
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Chapter 5 – continued 5.10 Bivariate normal distributions

Multivariate normal – Matrix notation

Same things hold for multivariate normal distribution as the bivariate.
Let X ∼ N(µ,Σ)

Linear combinations of X are normal
AX + b is (multivariate) normal for fixed matrix A and vector b
The marginal distribution of Xi is normal with mean µi and
variance σ2

i

The off-diagonal elements of Σ are the covariances between
individual elements of X, i.e. Cov(Xi ,Xj) = σi,j .
The joint marginal distributions are also normal where the mean
and covariance matrix are found by picking the corresponding
elements from µ and rows and columns from Σ.
The conditional distributions are also normal (multivariate or
univariate)
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Chapter 5 – continued 5.7 Gamma distributions

Gamma distributions

The Gamma function: Γ(α) =
∫∞

0 xα−1e−xdx
Γ(1) = 1 and Γ(0.5) =

√
π

Γ(α) = (α− 1)Γ(α) if α > 1

Def: Gamma distributions – Gamma(α, β)

A continuous r.v. X has the gamma distribution with parameters α and
β if it has the pdf

f (x |α, β) =

{
βα

Γ(α)xα−1e−βx for x > 0
0 otherwise

Parameter space: α > 0 and β > 0

Gamma(1, β) is the same as the exponential distribution with
parameter β, Expo(β)
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Chapter 5 – continued 5.7 Gamma distributions

Properties of the gamma distributions

ψ(t) =
(

β
β+t

)α
E(X ) = α

β and E(X ) = α
β2

If X1, . . . ,Xk are independent Γ(αi , β) r.v. then

X1 + · · ·+ Xk ∼ Gamma

(
k∑

i=1

αi , β

)
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Chapter 5 – continued 5.7 Gamma distributions

Properties of the gamma distributions

Theorem 5.7.9: Exponential distribution is memoryless

Let X ∼ Expo(β) and let t > 0. Then for any h > 0

P(X ≥ t + h|X ≥ t) = P(X ≥ h)

Theorem 5.7.12: Times between arrivals in a Poisson process

Let Zk be the time until the k th arrival in a Poisson process with rate β.
Let Y1 = Z1 and Yk = Zk − Zk−1 for k ≥ 2.
Then Y1,Y2,Y3, . . . are i.i.d. with the exponential distribution with
parameter β.
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Beta distributions

Def: Beta distributions – Beta(α, β)

A continuous r.v. X has the beta distribution with parameters α and β if
it has the pdf

f (x |α, β) =

{
Γ(α+β)

Γ(α)Γ(β)xα−1(1− x)β−1 for 0 < x < 1
0 otherwise

Parameter space: α > 0 and β > 0

Beta(1,1) = Uniform(0,1)

Used to model a random variable that takes values between 0 and
1.
The Beta distributions are often used as prior distributions for
probability parameters, e.g. the p in the Binomial distribution.
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Chapter 5 – continued 5.8 Beta distributions

Beta distributions
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END OF CHAPTER 5
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