Chapter 5 sections

Discrete univariate distributions:

@ 5.2 Bernoulli and Binomial distributions

@ Just skim 5.3 Hypergeometric distributions

® 5.4 Poisson distributions

@ Just skim 5.5 Negative Binomial distributions
Continuous univariate distributions:

@ 5.6 Normal distributions

@ 5.7 Gamma distributions

@ Just skim 5.8 Beta distributions
Multivariate distributions

@ Just skim 5.9 Multinomial distributions

@ 5.10 Bivariate normal distributions
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Chapter 5 — continued 5.6 Normal distributions

Why Normal?

@ Works well in practice. Many physical experiments
have distributions that are approximately normal

@ Central Limit Theorem: Sum of many i.i.d. random
variables are approximately normally distributed

@ Mathematically convenient — especially the
multivariate normal distribution.

e Can explicitly obtain the distribution of many
functions of a normally distributed random variable
have.

e Marginal and conditional distributions of a
multivariate normal are also normal (multivariate or
univariate).

@ Developed by Gauss and then Laplace in the early
1800s

@ Also known at the Gaussian distributions

STA 611 (Lecture 09) Expectation

Laplace

Sep 25, 2012

2/25



Normal distributions

Def: Normal distributions — N(p, 0?)

A continuous r.v. X has the normal distribution with mean . and
variance o2 if it has the pdf

1 )2
f(x|u,02):\/ﬂaexp(—(x2azu)>, —00 < X < 00

Parameter space: 1 € R and 62 > 0

Show:
o (t) = exp (ut + $o?t?)
@ E(X)=up
@ Var(X) = o?

STA 611 (Lecture 09) Expectation Sep 25, 2012 3/25



The Bell curve

Different mean, same variance Same means, different variance
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u:O,c2
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Normal density
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Normal density
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Chapter 5 — continued 5.6 Normal distributions

Standard normal

Standard normal distribution: N(0, 1)

The normal distribution with 1 = 1 and ¢ = 1 is called the standard
normal distribution and the pdf and cdf are denoted as ¢(x) and ®(x)

@ The cdf for a normal distribution cannot be expressed in closed
form and is evaluated using numerical approximations.

@ d(x) is tabulated in the back of the book. Many calculators and
programs such as R, Matlab, Excel etc. can calculate ®(x).

@ d(—x)=1—-d(x)
® ¢~ '(p)=-o"(1-p)
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Chapter 5 — continued 5.6 Normal distributions

Properties of the normal distributions

Theorem 5.6.4: Linear transformation of a normal is still normal

If X ~ N(u,02) and Y = aX + b where aand b are constants and
a # 0 then

Y ~ N(au + b, &5°)

@ Let F be the cdf of X, where X ~ N(u,0?). Then
X = pu
Fx)=9¢
(=0 ()

F~'(p) = pu+0®~'(p)

and
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Chapter 5 — continued 5.6 Normal distributions

Example: Measured Voltage

Suppose the measured voltage, X, in a certain electric circuit has the
normal distribution with mean 120 and standard deviation 2

@ What is the probability that the measured voltage is between 118
and 1227

@ Below what value will 95% of the measurements be?
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Chapter 5 — continued 5.6 Normal distributions

Properties of the normal distributions

Theorem 5.6.7: Linear combination of ind. normals is a normal

Let Xi,..., Xk be independent r.v. and X; ~ N(u;, 0,-2) fori=1,... k.
Then

X1_|_..._|_XkNN(,u1_|_..._|_Mk’ 012"‘"""‘7/%)

Also, if a4, ..., ax and b are constants where at least one g; is not zero:

i=1 i=1

k k
a1X1++aka—|—bNN<b+ZMh Za12012>

In particular:
@ The sample mean: X, =131 | X;
@ If Xi,..., X, are a random sample from a N(u, 02), what is the

distribution of the sample mean?
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Example: Measured voltage — continued

Suppose the measured voltage, X, in a certain electric circuit has the
normal distribution with mean 120 and standard deviation 2.

@ If three independent measurements of the voltage are made, what
is the probability that the sample mean X3 will lie between 118
and 1207

@ Find x that satisfies P(| X3 — 120| < x) = 0.95
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Chapter 5 — continued 5.6 Normal distributions

Area under the curve
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Chapter 5 — continued 5.6 Normal distributions

Lognormal distributions

Def: Lognormal distributions

If log(X) ~ N(u,o?) then we say that X has the Lognormal distribution
with parameters ;. and o°.

0.6

@ The support of the lognormal
distribution is (0, c0).

@ Often used to model time
before failure. S

0.4

Lognormal density
0.2

Example:

@ Let X and Y be independent random variables such that
log(X) ~ N(1.6,4.5) and log(Y) ~ N(3,6). What is the
distribution of the product XY?

STA 611 (Lecture 09) Expectation Sep 25, 2012 11/25



Chapter 5 — continued 5.10 Bivariate normal distributions

Bivariate normal distributions

Def: Bivariate normal

Two continuous r.v. X; and X5 have the bivariate normal distribution
with means p4 and i, variances o2 and o3 and correlation p if they
have the joint pdf

1
f(x1,%) = —27r(1 — ar0s

1 —)? X1 — Xo — Xo — pz)?
X exp <_7 [(X1 2,u1) —2p< 1 H1> < 2 ,uz> + ( 2 2#2) }) )
2 o3 foz] o2 o5
Parameter space: u; € R, a;? >0fori=1,2and -1 <p <1
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Chapter 5 — continued 5.10 Bivariate normal distributions

Bivariate normal pdf

Bivariate normal pdf with different p:

Correlation = 0 Correlation = 0.5 Correlation = 0.9 Correlation = -0.9
Contours:
Correlation = 0 Correlation = 0.5 Correlation = 0.9 Correlation = -0.9

© o © ©
~ A ~ o ~ A ~ o
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Chapter 5 — continued 5.10 Bivariate normal distributions

Bivariate normal as linear combination

Theorem 5.10.1: Bivariate normal from two ind. standard normals
Let Z; ~ N(0,1) and Z, ~ N(0, 1) be independent.
Let uj € R,02 >0fori=1,2and -1 < p < 1and let

Xi =014 +

Xo = 02(pZy + V1 — p?22) + pi2

Then the joint distribution of X; and X5 is bivariate normal with
parameters 1, ip, 05, o5 and p

Theorem 5.10.2 (part 1) — the other way

Let X7 and X, have the pdf in (1). Then there exist independent
standard normal r.v. Z; and Z so that (2) holds.
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Chapter 5 — continued 5.10 Bivariate normal distributions

Properties of a bivariate normal

Theorem 5.10.2 (part 2)

Let Xi and X, have the pdf in (1). Then the marginal distributions are
Xi ~ N(ui,0%) and  Xo ~ N(up,03)

And the correlation between X; and X5 is p

Theorem 5.10.4: The conditional is normal

Let Xi and X, have the pdf in (1). Then the conditional distribution of
Xo given that Xi = xq is (univariate) normal with

(X1 — )
a1
Var(Xe| Xy = x1) = (1 = p?)o3

E(Xa| Xy = x1) = p2 + po and

v
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Chapter 5 — continued

5.10 Bivariate normal distributions

Properties of a bivariate normal

Theorem 5.10.3: Uncorrelated = Independent

Let X; and X5 have the bivariate normal distribution. Then X; and X5

are independent if and only if they are uncorrelated.

@ Only holds for the multivariate normal distribution

@ One of the very convenient properties of the normal distribution

Theorem 5.10.5: Linear combinations are normal

Let X7 and X5 have the pdf in (1) and let a;, a> and b be constants.

Then Y = a1 X; + a> X + b is normally distributed with

E(Y)=ajpu + apux+b and
Var(Y) = a$(712 TF 320'5 + 2aiaxpoq0o

@ This extends what we already had for independent normals
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Chapter 5 — continued 5.10 Bivariate normal distributions

Example

Let X; and X5 have the bivariate normal
distribution with means p1 = 3, o = 5,
variances 0% = 4, 05 = 9 and correlation
p=0.6.

a) Find the distribution of X5 — 2X;

b) What is expected value of X5, given that
we observed Xj = 2? o @

c) What is the probability that X; > X5?

10
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Chapter 5 — continued 5.10 Bivariate normal distributions

Multivariate normal — Matrix notation

The pdf of an n-dimensional normal distribution, X ~ N(u, X):

1 1
f(X) = ——————¢ex —— (X — TZ_1X—
where
2
oy 012 013 - Oinp
HA X4 ! 2
i X 021 O3 023 -° O2p
p=""1, x=|"| and T=|0o31 32 0F - o3n
Hn Xn 2
Oni Op2 Op3 "' Op

w is the mean vector and X is called the variance-covariance matrix.
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Chapter 5 — continued 5.10 Bivariate normal distributions

Multivariate normal — Matrix notation

Same things hold for multivariate normal distribution as the bivariate.
Let X ~ N(p, X)

@ Linear combinations of X are normal
@ AX + b is (multivariate) normal for fixed matrix A and vector b

@ The marginal distribution of X; is normal with mean p; and
variance o2

@ The off-diagonal elements of ¥ are the covariances between
individual elements of X, i.e. Cov(Xj, Xj) = 0.

@ The joint marginal distributions are also normal where the mean
and covariance matrix are found by picking the corresponding
elements from p and rows and columns from X.

@ The conditional distributions are also normal (multivariate or
univariate)
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Chapter 5 — continued 5.7 Gamma distributions

Gamma distributions

@ The Gamma function: T () = [¢~ x*~ e *dx
@ (1)=1andr(0.5) =7
o M(a)=(a—N(a)ifa>1

Def: Gamma distributions — Gamma(«, [3)
A continuous r.v. X has the gamma distribution with parameters o and
£ if it has the pdf

B ya—1,5-0x
(x|, B) = ORI for x >.0
0 otherwise

Parameter space: @« > 0and g > 0

@ Gamma(1, ) is the same as the exponential distribution with
parameter 3, Expo(3)
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Properties of the gamma distributions

° v(t) = (%)
e E(X)= % and E(X) = %
@ If Xy,..., Xk are independent I'(«;, 5) r.v. then

k
Xy + -+ X, ~ Gamma (Zai,ﬁ)

i=1

v

o — a=2p=2
o — a=2.p=4
b — a=4,=2
co | — 4=05p=05
L
®

£

S« |

g’o

o
a2

o

© T T T T T

0 1 2 3 4 5
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Chapter 5 — continued 5.7 Gamma distributions

Properties of the gamma distributions

Theorem 5.7.9: Exponential distribution is memoryless
Let X ~ Expo(3) and let t > 0. Then for any h > 0

P(X > t+ h|X > 1) = P(X > h)

Theorem 5.7.12: Times between arrivals in a Poisson process

Let Z be the time until the k" arrival in a Poisson process with rate 3.

Let Yy =2y and Yy = Zx — Z_4 for k > 2.

Then Yy, Yo, Y3, ... are i.i.d. with the exponential distribution with

parameter (3.
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Chapter 5 — continued 5.8 Beta distributions

Beta distributions

Def: Beta distributions — Beta(«, (3)

A continuous r.v. X has the beta distribution with parameters o and (3 if
it has the pdf

I(a+06) —1 i 81
f(x|o, B) = { Fare*™ (1 =X) for0 < x <1
0 otherwise

Parameter space: @« > 0and g > 0

@ Beta(1,1) = Uniform(0, 1)

@ Used to model a random variable that takes values between 0 and
1.

@ The Beta distributions are often used as prior distributions for
probability parameters, e.g. the p in the Binomial distribution.
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Chapter 5 — continued

a distributions
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Chapter 5 — continued

END OF CHAPTER 5
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