Chapter 7: Estimation

Sections

@ 7.1 Statistical Inference

Bayesian Methods:
@ 7.2 Prior and Posterior Distributions
@ 7.3 Conjugate Prior Distributions
@ 7.4 Bayes Estimators

Frequentist Methods:

@ 7.5 Maximum Likelihood Estimators
@ 7.6 Properties of Maximum Likelihood Estimators
e Skip: p. 434-441 (EM algorithm and Sampling Plans)

@ 7.7 Sufficient Statistics
@ Skip: 7.8 Jointly Sufficient Statistics
@ Skip: 7.9 Improving an Estimator
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Statistical Inference

We have seen statistical models in the form of probability distributions:
f(x|0)

@ In this section the general notation for any parameter will be 0
@ The parameter space will be denoted by Q

For example:
@ Life time of a christmas light series follows the Expo(#)

@ The average of 63 poured drinks is approximately normal with
mean 6

@ The number of people that have a disease out of a group of N
people follows the Binomial(N, #) distribution.

In practice the value of the parameter 6 is unknown.
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Statistical Inference

Statistical Inference: Given the data we have observed what can we
say about 67?
@ |.e. we observe random variables Xj, ..., X, that we assume
follow our statistical model and then we want to draw probabilistic
conclusions about the parameter 6.

For example:

@ If | tested 5 christmas light series from the same manufacturer and
they lasted for
21,103,76,88 and 96 days.

Assuming that the life times are independent and follow Expo(6),
what does this data set tell me about the failure rate 6?
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Chapter 7 7.1 Statistical Inference

Statistical Inference — Another example

Say | take a random sample of 100 people and test them all for a
disease.

If 3 of them have the disease, what can | say about 6 = the prevalence
of the disease in the population?

@ Say | estimate 6 as § = 3/100 = 3%.

@ How sure am | about this number?
| want uncertainty bounds on my estimate.

@ Can | be confident that the prevalence of the disease is higher
than 2% ?
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Statistical Inference

Examples of different types of inference

Prediction
@ Predict random variables that have not yet been observed

@ E.g. If we test 40 more people for the disease, how many people
do we predict have the disease?

Estimation
@ Estimate (predict) the unknown parameter ¢
@ E.g. We estimated the prevalence of the disease as § = 3%.
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Statistical Inference

Examples of different types of inference

Making decisions
@ Hypothesis testing, decision theory

@ E.g. If the disease affects 2% or more of the population, the state
will launch a costly public health campaign.
Can we be confident that ¢ is higher than 2% ?

Experimental Design
@ What and how much data should we collect?

@ E.g. How do | select people in my clinical trial? How many do |
need to be comfortable making decision based on my analysis?

@ Often limited by time and / or budget constraints
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Bayesian vs. Frequentist Inference

Should a parameter be treated as a random variable?
@ Do we think about f(x|6) as the conditional pdf/pf of X given 6 or
@ do we think about f(x|#) as a pdf/pf indexed by 6 that is unknown?

E.g. consider the prevalence of a disease.

Frequentists:
@ No, the proportion g of the population that has the disease, is not
a random phenomenon but a fixed number that is simply unknown

@ Example: 95% confidence interval:
Wish to find random variables T; and T that satisfy the
probabilistic statement P(T;y < g < T») > 0.9

Interpretation: P(T; < g < T») is the probability that the random
interval [Ty, T,] covers g
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Bayesian vs. Frequentist Inference

Should a parameter be treated as a random variable?
E.g. consider the prevalence of a disease.
Bayesians:

@ Yes, the proportion Q of the population that has the disease is
unknown and the distribution of Q is a subjective probability

distribution that expresses the experimenters (prior) beliefs about
Q

@ Example: 95% credible interval:
Wish to find constants t; and f, that satisfy the probabilistic
statement P(t < Q <ty |data) > 0.9

Interpretation: P(t; < Q < 1) is the probability that the parameter
Qs in the interval [t1, t2].
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Bayesian Inference

Prior distribution

Prior distribution: The distribution we assign to parameters before
observing the random variables. Notation for the prior pdi/pf: We will
use p(0), the book uses £(¢)

Likelihood
When the joint pdf/pf f(x|#) is regarded as a function of ¢ for given
observations xq, ..., x, it is called the likelihood function.

Posterior distribution

Posterior distribution: The conditional distribution of the parameters 6
given the observed random variables Xj, ..., X,. Notation for the
posterior pdf/pf: We will use

p(61x1,. ., Xn) = P(B]x)

4

STA 611 (Lecture 11) Expectation Oct 4, 2012 9/23



Bayesian Inference

Theorem 7.2.1: Calculating the posterior
Let Xi,..., X, be a random sample with pdf/pf f(x|#) and let p(6) be
the prior pdf/pf of 6. The the posterior pdf/pf is

p(0|x) _ f(X1|9) X o0 X f(Xn|9)P(9)

g(x)
where
a0 = [ f(xio)p(0)at
is the marginal distribution of Xj,..., X,
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Example: Binomial Likelihood and a Beta prior

| take a random sample of 100 people and test them all for a disease.
Assume that

Beta(2,10)

@ Likelihood: I
X|6 ~ Binomial(100, 6), 2"
where X denotes the number g~
of people with the disease 1
@ Prior: ¢ ~ Beta(2,10) o %zt b @ i

X

@ | observe X = 3 and | want to find the posterior distribution of #

Do the general case first: Find the posterior distribution of 6 when
X|6 ~ Binomial(n, 8) and 6 ~ Beta(«, 3) where n, . and 3 are known.
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Chapter 7 7.2 Prior and Posterior Distributions

Example: Binomial Likelihood and a Beta prior

0 |
o —— Prior: Beta(2,10)
o | —— Posterior: Beta(5,107)
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Notice how the posterior is more concentrated than the prior.
After seeing the data we know more about ¢
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Bayesian Inference

Recall the formula for the posterior distribution:

f(x1|0) x - -+ x f(xn|0)p(6)
Qn(x)

pOlx) =

where g(x) = [, f(x|0)p(0)dd is the marginal distribution
@ g(x ) does not depend on ¢
@ We can therefore write

p(0]x) o< f(x[6)p(6)

@ In many cases we can recognize the form of the distribution of 6
from f(x|6)p(0), eliminating the need to calculate the marginal
distribution

Example: The Binomial - Beta case
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Sequential Updates

If our observations are a random sample, we can do Bayesian Analysis
sequentially:

@ Each time we use the posterior from the previous step as a prior:

p(0]x1) o< f(x1]6)p(6)
p(61x1, X2) o< f(x2|0)p(6]x1)
p(81x1, X2, x3) o f(x3|0)p(6|X1, X2)

p(0|x1,...xn) x f(xn|0)p(O|X1, ..., Xn_1)

For example:
@ Say | test 40 more people for the disease and 2 tested positive.
@ What is the new posterior?
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Chapter 7 7.2 Prior and Posterior Distributions

Prior distributions

@ The prior distribution should reflect what we know apriori about ¢

@ For example: Beta(2,10) puts almost all of the density below 0.5
and has a mean 2/(2 + 10) = 0.167, saying that a prevalence of
more then 50% is very unlikely

@ Using Beta(1, 1), i.e. the Uniform(0, 1) indicates that a priori all
values between 0 and 1 are equally likely.
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Choosing a prior

@ Deciding what prior distribution to use can be very difficult

@ We need a distribution (e.g. Beta) and its hyperparameters
(e.9. o, B)

@ When hyperparameters are difficult to interpret we can sometimes
set a mean and a variance and solve for parameters
E.g: What Beta prior has mean 0.1 and variance 0.12 ?

@ If more than one option seems sensible, we perform sensitivity
analysis:
We compare the posteriors we get when using the different priors.
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Chapter 7

7.2 Prior and Posterior Distributions

Sensitivity analysis — Binomial-Beta example

= Prior: Beta(2,10)
—— Posterior: Beta(5,107)

Prior mean: 0.167
Posterior mean: 0.045
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Prior mean: 0.5
- Posterior mean: 0.039
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Notice: The posterior mean is always between the prior mean and the
observed proportion 0.03
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Chapter 7 7.2 Prior and Posterior Distributions

Effect of sample size and prior variance
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Example - Normal distribution

@ Let Xi,..., X, be a random sample from N(6, o2) where o2 is
known

@ Let the prior distribution of 6 be N(uy, yg) where 19 and v? are
known.

@ Show that the posterior distribution p(6|x) is N(u1,v?) where

o? g + nl/gin > 021/5
= and vf = >
o< + nuyg o° + nug

The posterior mean is a linear combination of the prior mean g
and the observed sample mean.

@ What happens when 12 — co?
@ What happens when v5 — 0?
@ What happens when n — c0?
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Chapter 7 7.2 Prior and Posterior Distributions

Example - Normal distribution

N =5, prior mean =5, prior sd =0.5

a7 —— Likelihood
—— Prior
—— Posterior

Density
1
!

GUI example...
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Conjugate Priors

Def: Conjugate Priors

Let X1, Xo, ... be a random sample from f(x|0). A family W of
distributions is called a conjugate family of prior distributions if for any
prior distribution p(#) in W the posterior distribution p(6|x) is also in W

Likelihood \ Conjugate Prior for 6
Bernoulli(6) The Beta distributions
Poisson(6) The Gamma distributions
N(9,52), o2 known | The Normal distributions
Exponential(6) The Gamma distributions

Have already see the Bernoulli-Beta and Normal-Normal cases
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Conjugate prior families

@ The Gamma distributions are a conjugate family for the Poisson(8)
likelihood:

If X1,...,Xpi.id. Poisson(f) and 6 ~ Gamma(c, (3)
then the posterior is

n
Gamma (a + Z Xi, B+ n>

i=1

@ The Gamma distributions are a conjugate family for the Expo(9)
likelihood:

If X1,...,Xpiid. Expo(f) and § ~ Gamma(c, 3)
then the posterior is

n
Gamma (oz +n g+ Z Xi>

i=1
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Improper priors

@ Improper Prior: A “pdf” p(9) where [ p(8)df =
@ Used to try to put more emphasis on data and down play the prior
@ Used when there is little or no prior information about 6.
@ Not clear that an improper prior is necessarily “non-informative”.
@ Danger: We always need to check that the posterior pdf is proper!
(Integrates to 1)
Example:
@ Let Xi,..., X, bei.i.d. N(#,02) and p(f) = 1, for 6 € R.
@ Note: Here the prior variance is co
@ Then the posterior is N(Xp, 02 /n)
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