
Chapter 7

Chapter 7: Estimation
Sections

7.1 Statistical Inference

Bayesian Methods:
7.2 Prior and Posterior Distributions
7.3 Conjugate Prior Distributions
7.4 Bayes Estimators

Frequentist Methods:
7.5 Maximum Likelihood Estimators
7.6 Properties of Maximum Likelihood Estimators

Skip: p. 434-441 (EM algorithm and Sampling Plans)

7.7 Sufficient Statistics
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Skip: 7.9 Improving an Estimator
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Chapter 7 7.1 Statistical Inference

Statistical Inference

We have seen statistical models in the form of probability distributions:

f (x |θ)

In this section the general notation for any parameter will be θ
The parameter space will be denoted by Ω

For example:
Life time of a christmas light series follows the Expo(θ)

The average of 63 poured drinks is approximately normal with
mean θ
The number of people that have a disease out of a group of N
people follows the Binomial(N, θ) distribution.

In practice the value of the parameter θ is unknown.
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Chapter 7 7.1 Statistical Inference

Statistical Inference

Statistical Inference: Given the data we have observed what can we
say about θ?

I.e. we observe random variables X1, . . . ,Xn that we assume
follow our statistical model and then we want to draw probabilistic
conclusions about the parameter θ.

For example:
If I tested 5 christmas light series from the same manufacturer and
they lasted for

21,103,76,88 and 96 days.

Assuming that the life times are independent and follow Expo(θ),
what does this data set tell me about the failure rate θ?
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Chapter 7 7.1 Statistical Inference

Statistical Inference – Another example

Say I take a random sample of 100 people and test them all for a
disease.

If 3 of them have the disease, what can I say about θ = the prevalence
of the disease in the population?

Say I estimate θ as θ̂ = 3/100 = 3%.
How sure am I about this number?
I want uncertainty bounds on my estimate.
Can I be confident that the prevalence of the disease is higher
than 2% ?
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Chapter 7 7.1 Statistical Inference

Statistical Inference
Examples of different types of inference

Prediction
Predict random variables that have not yet been observed
E.g. If we test 40 more people for the disease, how many people
do we predict have the disease?

Estimation
Estimate (predict) the unknown parameter θ
E.g. We estimated the prevalence of the disease as θ̂ = 3%.
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Chapter 7 7.1 Statistical Inference

Statistical Inference
Examples of different types of inference

Making decisions
Hypothesis testing, decision theory
E.g. If the disease affects 2% or more of the population, the state
will launch a costly public health campaign.
Can we be confident that θ is higher than 2% ?

Experimental Design
What and how much data should we collect?
E.g. How do I select people in my clinical trial? How many do I
need to be comfortable making decision based on my analysis?
Often limited by time and / or budget constraints
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Chapter 7 7.1 Statistical Inference

Bayesian vs. Frequentist Inference

Should a parameter be treated as a random variable?
Do we think about f (x|θ) as the conditional pdf/pf of X given θ or
do we think about f (x|θ) as a pdf/pf indexed by θ that is unknown?

E.g. consider the prevalence of a disease.

Frequentists:
No, the proportion q of the population that has the disease, is not
a random phenomenon but a fixed number that is simply unknown

Example: 95% confidence interval:
Wish to find random variables T1 and T2 that satisfy the
probabilistic statement P(T1 ≤ q ≤ T2) ≥ 0.9

Interpretation: P(T1 ≤ q ≤ T2) is the probability that the random
interval [T1,T2] covers q
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Chapter 7 7.1 Statistical Inference

Bayesian vs. Frequentist Inference

Should a parameter be treated as a random variable?

E.g. consider the prevalence of a disease.

Bayesians:
Yes, the proportion Q of the population that has the disease is
unknown and the distribution of Q is a subjective probability
distribution that expresses the experimenters (prior) beliefs about
Q

Example: 95% credible interval:
Wish to find constants t1 and t2 that satisfy the probabilistic
statement P(t1 ≤ Q ≤ t2 | data ) ≥ 0.9

Interpretation: P(t1 ≤ Q ≤ t2) is the probability that the parameter
Q is in the interval [t1, t2].
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Chapter 7 7.2 Prior and Posterior Distributions

Bayesian Inference

Prior distribution
Prior distribution: The distribution we assign to parameters before
observing the random variables. Notation for the prior pdf/pf : We will
use p(θ), the book uses ξ(θ)

Likelihood
When the joint pdf/pf f (x|θ) is regarded as a function of θ for given
observations x1, . . . , xn it is called the likelihood function.

Posterior distribution
Posterior distribution: The conditional distribution of the parameters θ
given the observed random variables X1, . . . ,Xn. Notation for the
posterior pdf/pf : We will use

p(θ|x1, . . . , xn) = p(θ|x)
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Chapter 7 7.2 Prior and Posterior Distributions

Bayesian Inference

Theorem 7.2.1: Calculating the posterior

Let X1, . . . ,Xn be a random sample with pdf/pf f (x |θ) and let p(θ) be
the prior pdf/pf of θ. The the posterior pdf/pf is

p(θ|x) =
f (x1|θ)× · · · × f (xn|θ)p(θ)

g(x)

where
g(x) =

∫
Ω

f (x|θ)p(θ)dθ

is the marginal distribution of X1, . . . ,Xn
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Chapter 7 7.2 Prior and Posterior Distributions

Example: Binomial Likelihood and a Beta prior

I take a random sample of 100 people and test them all for a disease.
Assume that

Likelihood:
X |θ ∼ Binomial(100, θ),
where X denotes the number
of people with the disease
Prior: θ ∼ Beta(2,10)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

x

D
en

si
ty

Beta(2,10)

I observe X = 3 and I want to find the posterior distribution of θ

Do the general case first: Find the posterior distribution of θ when
X |θ ∼ Binomial(n, θ) and θ ∼ Beta(α, β) where n, α and β are known.
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Chapter 7 7.2 Prior and Posterior Distributions

Example: Binomial Likelihood and a Beta prior
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Prior: Beta(2,10)
Posterior: Beta(5,107)

Notice how the posterior is more concentrated than the prior.
After seeing the data we know more about θ
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Chapter 7 7.2 Prior and Posterior Distributions

Bayesian Inference

Recall the formula for the posterior distribution:

p(θ|x) =
f (x1|θ)× · · · × f (xn|θ)p(θ)

gn(x)

where g(x) =
∫

Ω f (x|θ)p(θ)dθ is the marginal distribution

g(x) does not depend on θ
We can therefore write

p(θ|x) ∝ f (x|θ)p(θ)

In many cases we can recognize the form of the distribution of θ
from f (x|θ)p(θ), eliminating the need to calculate the marginal
distribution

Example: The Binomial - Beta case
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Chapter 7 7.2 Prior and Posterior Distributions

Sequential Updates

If our observations are a random sample, we can do Bayesian Analysis
sequentially:

Each time we use the posterior from the previous step as a prior:

p(θ|x1) ∝ f (x1|θ)p(θ)

p(θ|x1, x2) ∝ f (x2|θ)p(θ|x1)

p(θ|x1, x2, x3) ∝ f (x3|θ)p(θ|x1, x2)

...
p(θ|x1, . . . xn) ∝ f (xn|θ)p(θ|x1, . . . , xn−1)

For example:
Say I test 40 more people for the disease and 2 tested positive.
What is the new posterior?
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Chapter 7 7.2 Prior and Posterior Distributions

Prior distributions

The prior distribution should reflect what we know apriori about θ

For example: Beta(2,10) puts almost all of the density below 0.5
and has a mean 2/(2 + 10) = 0.167, saying that a prevalence of
more then 50% is very unlikely

Using Beta(1,1), i.e. the Uniform(0,1) indicates that a priori all
values between 0 and 1 are equally likely.

STA 611 (Lecture 11) Expectation Oct 4, 2012 15 / 23



Chapter 7 7.2 Prior and Posterior Distributions

Choosing a prior

Deciding what prior distribution to use can be very difficult

We need a distribution (e.g. Beta) and its hyperparameters
(e.g. α, β)

When hyperparameters are difficult to interpret we can sometimes
set a mean and a variance and solve for parameters
E.g: What Beta prior has mean 0.1 and variance 0.12 ?

If more than one option seems sensible, we perform sensitivity
analysis:
We compare the posteriors we get when using the different priors.
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Chapter 7 7.2 Prior and Posterior Distributions

Sensitivity analysis – Binomial-Beta example
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Prior: Beta(2,10)
Posterior: Beta(5,107)

Prior mean: 0.167
Posterior mean: 0.045
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Prior: Beta(1,1)
Posterior: Beta(4,98)

Prior mean: 0.5
Posterior mean: 0.039
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Prior: Beta(10,2)
Posterior: Beta(13,99)

Prior mean: 0.833
Posterior mean: 0.116
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Prior: Beta(0.8,7.2)
Posterior: Beta(3.8,104.2)

Prior mean: 0.1
Posterior mean: 0.035

Notice: The posterior mean is always between the prior mean and the
observed proportion 0.03
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Chapter 7 7.2 Prior and Posterior Distributions

Effect of sample size and prior variance

The posterior is
influenced both by
sample size and the
prior variance

Larger sample size
⇒ less the prior
influences the
posterior
Larger prior
variance⇒ the
less the prior
influences the
posterior
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Chapter 7 7.2 Prior and Posterior Distributions

Example - Normal distribution

Let X1, . . . ,Xn be a random sample from N(θ, σ2) where σ2 is
known
Let the prior distribution of θ be N(µ0, ν

2
0) where µ0 and ν2 are

known.
Show that the posterior distribution p(θ|x) is N(µ1, ν

2
1) where

µ1 =
σ2µ0 + nν2

0xn

σ2 + nν2
0

and ν2
1 =

σ2ν2
0

σ2 + nν2
0

The posterior mean is a linear combination of the prior mean µ0
and the observed sample mean.

What happens when ν2
0 →∞?

What happens when ν2
0 → 0?

What happens when n→∞?
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Chapter 7 7.2 Prior and Posterior Distributions

Example - Normal distribution
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N = 5, prior mean = 5, prior sd =0.5

GUI example...
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Chapter 7 7.3 Conjugate Prior Distributions

Conjugate Priors

Def: Conjugate Priors

Let X1,X2, . . . be a random sample from f (x |θ). A family Ψ of
distributions is called a conjugate family of prior distributions if for any
prior distribution p(θ) in Ψ the posterior distribution p(θ|x) is also in Ψ

Likelihood Conjugate Prior for θ
Bernoulli(θ) The Beta distributions
Poisson(θ) The Gamma distributions
N(θ, σ2), σ2 known The Normal distributions
Exponential(θ) The Gamma distributions

Have already see the Bernoulli-Beta and Normal-Normal cases
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Chapter 7 7.3 Conjugate Prior Distributions

Conjugate prior families

The Gamma distributions are a conjugate family for the Poisson(θ)
likelihood:
If X1, . . . ,Xn i.i.d. Poisson(θ) and θ ∼ Gamma(α, β)
then the posterior is

Gamma

(
α +

n∑
i=1

xi , β + n

)
The Gamma distributions are a conjugate family for the Expo(θ)
likelihood:
If X1, . . . ,Xn i.i.d. Expo(θ) and θ ∼ Gamma(α, β)
then the posterior is

Gamma

(
α + n, β +

n∑
i=1

xi

)
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Chapter 7 7.3 Conjugate Prior Distributions

Improper priors

Improper Prior : A “pdf” p(θ) where
∫

p(θ)dθ =∞
Used to try to put more emphasis on data and down play the prior
Used when there is little or no prior information about θ.
Not clear that an improper prior is necessarily “non-informative”.
Danger: We always need to check that the posterior pdf is proper!
(Integrates to 1)

Example:
Let X1, . . . ,Xn be i.i.d. N(θ, σ2) and p(θ) = 1, for θ ∈ R.
Note: Here the prior variance is∞
Then the posterior is N(xn, σ

2/n)
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