
Chapter 7 – continued

Chapter 7: Estimation
Sections

7.1 Statistical Inference

Bayesian Methods:
7.2 Prior and Posterior Distributions
7.3 Conjugate Prior Distributions
7.4 Bayes Estimators

Frequentist Methods:
7.5 Maximum Likelihood Estimators
7.6 Properties of Maximum Likelihood Estimators

Skip: p. 434-441 (EM algorithm and Sampling Plans)

7.7 Sufficient Statistics
Skip: 7.8 Jointly Sufficient Statistics
Skip: 7.9 Improving an Estimator
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Bayes Estimator

In principle, Bayesian inference is the posterior distribution
However, often people wish to estimate the unknown parameter θ
with a single number
A statistic: Any function of observable random variables
X1, . . . ,Xn, T = r(X1,X2, . . . ,Xn).

Example: The sample mean X n is a statistic

Def: Estimator / Estimate
Suppose our observable data X1, . . . ,Xn is i.i.d. f (x |θ), θ ∈ Ω ⊂ R.

Estimator of θ: A real valued function δ(X1, . . . ,Xn)

Estimate of θ: δ(x1, . . . , xn), i.e. estimator evaluated at the
observed values

An estimator is a statistic and a random variable
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Bayes Estimator

Def: Loss Function

Loss function: A real valued function L(θ,a) where θ ∈ Ω and a ∈ R.

L(θ,a) = what we loose by
using a as an estimate when
θ is the true value of the
parameter.

Examples:
Squared error loss function:
L(θ,a) = (θ − a)2

Absolute error loss function:
L(θ,a) = |θ − a|
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Bayes Estimator

Idea: Choose an estimator δ(X) so that we minimize the expected
loss

Def: Bayes Estimator – Minimum expected loss
An estimator is called the Bayesian estimator of θ if for all possible
observations x of X the expected loss is minimized. For given X = x
the expected loss is

E (L(θ,a)|x) =

∫
Ω

L(θ,a)p(θ|x)dθ

Let a∗(x) be the value of a where the minimum is obtained. Then
δ∗(x) = a∗(x) is the Bayesian estimate of θ and δ∗(X) is the Bayesian
estimator of θ.
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Bayes Estimator

For squared error loss: The posterior mean δ∗(X) = E(θ|X)

mina E (L(θ,a)|x) = mina E
(
(θ − a)2|x

)
. The mean of θ|x

minimizes this, i.e. the posterior mean.

For absolute error loss: The posterior median
mina E (L(θ,a)|x) = mina E ( |θ − a| |x). The median of θ|x
minimizes this, i.e. the posterior median.

The Posterior mean is a more common estimator because it is often
difficult to obtain a closed expression of the posterior median.
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Examples

Normal Bayes Estimator, with respect to squared error loss:
If X1, . . . ,Xn are N(θ, σ2) and θ ∼ N(µ0, ν

2
0) then the Bayesian

estimator of θ is

δ∗(X) =
σ2µ0 + nν2

0Xn

σ2 + nν2
0

Binomial Bayes Estimator, with respect to squared error loss:
If X ∼ Binomial(n, θ) and θ ∼ Beta(α, β) then the Bayesian
estimator of θ is

δ∗(X) =
α + X

α + β + n
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Consistency

Def: Consistent estimators
An estimator δn(X) = δ(X1, . . . ,Xn) is consistent if

δ(X)
P−→ θ as n→∞

Under fairly general conditions and for a wide range of loss
functions, the Bayes estimator is consistent
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Bayesian Inference – Pros and cons

Pros:
Gives a coherent theory for statistical inference such as
estimation.
Allows for incorporation of prior scientific knowledge about
parameters

Cons:
Selecting a scientifically meaningful prior distributions (and loss
functions) is often difficult, especially in high dimensions
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Frequentist Inference

Likelihood
When the joint pdf/pf f (x|θ) is regarded as a function of θ for given
observations x1, . . . , xn it is called the likelihood function.

Maximum Likelihood Estimator
Maximum likelihood estimator (MLE): For any given observations x we
pick the θ ∈ Ω that maximizes f (x|θ).

Given X = x, the maximum likelihood estimate (MLE) will be a
function of x. Notation: θ̂ = δ(X)

Potentially confusing notation: Sometimes θ̂ is used for both the
estimator and the estimate.
Note: The MLE is required to be in the parameter space Ω.
Often it is easier to maximize the log-likelihood L(θ) = log (f (x|θ)
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Examples

Let X ∼ Binomial(θ). Find the maximum likelihood estimator of θ.
Say we observe X = 3, what is the maximum likelihood estimate
of θ?

Let X1, . . . ,Xn be i.i.d. N(µ, σ2).
Find the MLE of µ when σ2 is known
Find the MLE of µ and σ2 (both unknown)

Let X1, . . . ,Xn be i.i.d. Uniform[0, θ], where θ > 0. Find θ̂

Let X1, . . . ,Xn be i.i.d. Uniform[θ, θ + 1]. Find θ̂
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MLE

Intuition:
We pick the parameter that makes the observed data most likely
But: The likelihood is not a pdf/pf: If the likelihood of θ1 is larger
than the likelihood of θ1, i.e. f (x|θ2) > f (x|θ1) it does NOT mean
that θ2 is more likely

Remember: θ is not random here

Limitations:
Does not always exist
Not always appropriate - we cannot incorporate “external” (prior)
knowledge
May not be unique
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