Chapter 7: Estimation
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@ 7.1 Statistical Inference

Bayesian Methods:
@ 7.2 Prior and Posterior Distributions
@ 7.3 Conjugate Prior Distributions
@ 7.4 Bayes Estimators

Frequentist Methods:

@ 7.5 Maximum Likelihood Estimators
@ 7.6 Properties of Maximum Likelihood Estimators
e Skip: p. 434-441 (EM algorithm and Sampling Plans)

@ 7.7 Sufficient Statistics
@ Skip: 7.8 Jointly Sufficient Statistics
@ Skip: 7.9 Improving an Estimator
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Chapter 7 — continued 7.4 Bayes Estimators

Bayes Estimator

@ In principle, Bayesian inference is the posterior distribution

@ However, often people wish to estimate the unknown parameter 6
with a single number

@ A statistic: Any function of observable random variables
X1,...,Xn, T= f(X1,X2,...,Xn).
e Example: The sample mean X, is a statistic

Def: Estimator / Estimate
Suppose our observable data X, ..., X, is i.i.d. f(x|6), 6 € Q C R.
@ Estimator of §: A real valued function §(Xi, ..., Xn)
@ Estimate of 0: §(xq, ..., Xn), i.e. estimator evaluated at the
observed values

@ An estimator is a statistic and a random variable

STA 611 (Lecture 11) Expectation Oct 9, 2012 2/11



Bayes Estimator

Def: Loss Function
Loss function: A real valued function L(60, a) where § € Q and a € R.

~ —— Squared error loss
o L(e’ a) = what we loose by —— Absolute error loss
using a as an estimate when ™ -
0 is the true value of the —
parameter. o~
Examples: =
@ Squared error loss function: .
L(6,a) = (6 — a)?
@ Absolute error loss function: o
L(6,a) = [0 — a| 8-2 6-1 6 0+1 0+2
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Bayes Estimator

@ Idea: Choose an estimator §(X) so that we minimize the expected
loss

Def: Bayes Estimator — Minimum expected loss

An estimator is called the Bayesian estimator of @ if for all possible
observations x of X the expected loss is minimized. For given X = x
the expected loss is

E (L. a0 = [ L(6.2)p(0)ds
Q
Let a*(x) be the value of a where the minimum is obtained. Then

5*(x) = a*(x) is the Bayesian estimate of 8 and ¢*(X) is the Bayesian
estimator of 6.
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Bayes Estimator

For squared error loss: The posterior mean §*(X) = E(6|X)
@ ming E (L(6, a)|x) = ming E ((6 — a)?|x). The mean of 6|x
minimizes this, i.e. the posterior mean.

For absolute error loss: The posterior median
@ ming E (L(0, a)|x) = ming E (|6 — a| | x). The median of §|x

minimizes this, i.e. the posterior median.

The Posterior mean is a more common estimator because it is often
difficult to obtain a closed expression of the posterior median.

STA 611 (Lecture 11) Expectation Oct 9, 2012 5/11



Examples

Normal Bayes Estimator, with respect to squared error loss:

@ If Xi,..., X, are N(0,02) and 6 ~ N(uo,v3) then the Bayesian
estimator of 6 is ) -
nvsX
5*(X) _ o Mg—i_ l/% n
o + nvg
Binomial Bayes Estimator, with respect to squared error loss:

@ If X ~ Binomial(n, #) and 6 ~ Beta(«, 3) then the Bayesian

estimator of 0 is
a+ X

"X = it
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Consistency

Def: Consistent estimators
An estimator 6,(X) = 0(X1, ..., Xp) is consistent if

5(X)i>0 as n— oo

@ Under fairly general conditions and for a wide range of loss
functions, the Bayes estimator is consistent
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Bayesian Inference — Pros and cons

Pros:

@ Gives a coherent theory for statistical inference such as
estimation.

@ Allows for incorporation of prior scientific knowledge about
parameters

Cons:

@ Selecting a scientifically meaningful prior distributions (and loss
functions) is often difficult, especially in high dimensions

STA 611 (Lecture 11) Expectation Oct 9, 2012 8/11



Chapter 7 — continued 7.5 Maximum Likelihood Estimators

Frequentist Inference

Likelihood
When the joint pdf/pf f(x|0) is regarded as a function of ¢ for given
observations x1, ..., x, it is called the likelihood function.

Maximum Likelihood Estimator

Maximum likelihood estimator (MLE): For any given observations x we
pick the 6 € Q that maximizes f(x|0).

@ Given X = x, the maximum likelihood estimate (MLE) will be a
function of x. Notation: 0 = §(X)

@ Potentially confusing notation: Sometimes  is used for both the
estimator and the estimate.

@ Note: The MLE is required to be in the parameter space Q.
@ Often it is easier to maximize the log-likelihood L(0) = log (f(x|0)
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Examples

@ Let X ~ Binomial(¢). Find the maximum likelihood estimator of 6.
Say we observe X = 3, what is the maximum likelihood estimate
of 67

@ Let Xq,..., X, beiid. N(u,d?).

e Find the MLE of ; when o2 is known
e Find the MLE of 1 and o2 (both unknown)

@ Let Xi,..., X, bei.id. Uniform[0, 6], where § > 0. Find 4

@ Let Xi,..., X, bei.id. Uniform[0,0 + 1]. Find §
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Chapter 7 — continued 7.5 Maximum Likelihood Estimators

Intuition:
@ We pick the parameter that makes the observed data most likely

@ But: The likelihood is not a pdf/pf: If the likelihood of 64 is larger
than the likelihood of 61, i.e. f(x|62) > f(x|0) it does NOT mean
that 6, is more likely

@ Remember: 6 is not random here
Limitations:
@ Does not always exist

@ Not always appropriate - we cannot incorporate “external” (prior)
knowledge

@ May not be unique
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