Chapter 7: Estimation

Sections

@ 7.1 Statistical Inference

Bayesian Methods:
@ 7.2 Prior and Posterior Distributions
@ 7.3 Conjugate Prior Distributions
@ 7.4 Bayes Estimators
Frequentist Methods:
® 7.5 Maximum Likelihood Estimators

@ 7.6 Properties of Maximum Likelihood Estimators
e Skip: p. 434-441 (EM algorithm and Sampling Plans)

@ Skip: 7.7 Sufficient Statistics
@ Skip: 7.8 Jointly Sufficient Statistics
@ Skip: 7.9 Improving an Estimator
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Chapter 7 — continued 7.6 Properties of Maximum Likelihood Estimators

Properties of MLE’s

Theorem 7.6.2: MLE’s are invariant

If § is the MLE of 6 and g(¢) is a function of ¢
then g(0) is the MLE of g(0)

Example:

@ Let p be the MLE of a probability parameter, e.g. the p in
Binomial(n, p).

Then the MLE of the odds, 25 is 125

In general this does not hold for Bayes estimators.
@ E.g. for square error loss E(g(0)|x) # g(E(6]x))
Consistency:

@ Under fairly typical conditions, e.g. MLEs are unique, the
sequence of MLEs is a consistent sequence of estimators of 9, i.e.

A P
On(X) — 6
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Chapter 7 — continued 7.6 Properties of Maximum Likelihood Estimators

Computation

For MLE’s

@ In many practical situations the maximization we need is not
available analytically or too cumbersome

@ There exist many numerical optimization methods, Newton’s
Method (see definition 7.6.2) is one example.
For Bayesian estimators

@ In many practical situations the posterior distribution is not
available in closed form

e This happens if we cannot evaluate the integral for the marginal
distribution

e In stead people either approximate the posterior distribution or take

random samples from it, e.g. using Markov Chain Monte Carlo
(MCMC) methods
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Method of Moments (MOM)

@ Let Xi,..., X, be i.i.d. from f(x|@) where 0 is k dimensional.
e The j! sample moment is defined as m; = 1 "7, X!

Method of moments (MOM) estimator: match the theoretical moments
and the sample moments and solve for parameters:

my = E(X1|0), my = E(X2|0), ..., mx = E(XK|6)

Example:
@ Let Xi,..., X, beiid. Gamma(«, 3). Then

ala+1)

EX)=2 and E(e) ==

g

Find the MOM estimator of o and
MOM estimators are consistent.
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Sufficient Statistics

@ Astatistic: T = r(Xy,...,Xn)

Def: Sufficient Statistics

Let Xj,..., X, be a random sample form f(x|6) and let T be a statistic.
If the conditional distribution of

Xi, .. Xa|T =t

does not depend on 6 then T is called a sufficient statistic

@ The idea: Just as good to have the observed sufficient statistic as
it is to have the individual observations of Xj,..., X,

@ Can limit our search for a good estimator to sufficient statistics
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Sufficient Statistics

Theorem 7.7.1: Factorization Criterion
Let Xi,..., X, be a random sample form f(x|0) where 6 € Q is

unknown. A statistic T = r(Xi,..., Xp) is a sufficient statistic for 6 if

and only if for all x € R™ and all 4 € Q, the joint pdf/pf f,(x|0) can be
factored as

fa(x]60) = u(x)v (r(x),0)

where function u and v are nonnegative.

@ The function u may depend on x but not on 6

@ The function v depends on 6 but depends on x only through the
value of the statistic r(x)

Both MLEs and Bayesian estimators depend on data only through
sufficient statistics.
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Chapter 7 — continued

END OF CHAPTER 7
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