
Chapter 7 – continued

Chapter 7: Estimation
Sections

7.1 Statistical Inference

Bayesian Methods:
7.2 Prior and Posterior Distributions
7.3 Conjugate Prior Distributions
7.4 Bayes Estimators

Frequentist Methods:
7.5 Maximum Likelihood Estimators
7.6 Properties of Maximum Likelihood Estimators

Skip: p. 434-441 (EM algorithm and Sampling Plans)

Skip: 7.7 Sufficient Statistics
Skip: 7.8 Jointly Sufficient Statistics
Skip: 7.9 Improving an Estimator
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Chapter 7 – continued 7.6 Properties of Maximum Likelihood Estimators

Properties of MLE’s

Theorem 7.6.2: MLE’s are invariant

If θ̂ is the MLE of θ and g(θ) is a function of θ
then g(θ̂) is the MLE of g(θ)

Example:
Let p̂ be the MLE of a probability parameter, e.g. the p in
Binomial(n,p).
Then the MLE of the odds, p

1−p is p̂
1−p̂

In general this does not hold for Bayes estimators.
E.g. for square error loss E(g(θ)|x) 6= g(E(θ|x))

Consistency:
Under fairly typical conditions, e.g. MLEs are unique, the
sequence of MLEs is a consistent sequence of estimators of θ, i.e.
θ̂n(X)

P−→ θ
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Computation

For MLE’s
In many practical situations the maximization we need is not
available analytically or too cumbersome
There exist many numerical optimization methods, Newton’s
Method (see definition 7.6.2) is one example.

For Bayesian estimators
In many practical situations the posterior distribution is not
available in closed form

This happens if we cannot evaluate the integral for the marginal
distribution
In stead people either approximate the posterior distribution or take
random samples from it, e.g. using Markov Chain Monte Carlo
(MCMC) methods
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Method of Moments (MOM)

Let X1, . . . ,Xn be i.i.d. from f (x |θ) where θ is k dimensional.

The j th sample moment is defined as mj = 1
n

∑n
i=1 X j

i

Method of moments (MOM) estimator : match the theoretical moments
and the sample moments and solve for parameters:

m1 = E(X1|θ), m2 = E(X 2
1 |θ), . . . , mk = E(X k

1 |θ)

Example:
Let X1, . . . ,Xn be i.i.d. Gamma(α, β). Then

E(X ) =
α

β
and E(X2) =

α(α + 1)

β2

Find the MOM estimator of α and β
MOM estimators are consistent.
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Sufficient Statistics

A statistic: T = r(X1, . . . ,Xn)

Def: Sufficient Statistics
Let X1, . . . ,Xn be a random sample form f (x |θ) and let T be a statistic.
If the conditional distribution of

X1, . . . ,Xn|T = t

does not depend on θ then T is called a sufficient statistic

The idea: Just as good to have the observed sufficient statistic as
it is to have the individual observations of X1, . . . ,Xn

Can limit our search for a good estimator to sufficient statistics
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Sufficient Statistics

Theorem 7.7.1: Factorization Criterion
Let X1, . . . ,Xn be a random sample form f (x |θ) where θ ∈ Ω is
unknown. A statistic T = r(X1, . . . ,Xn) is a sufficient statistic for θ if
and only if for all x ∈ Rn and all θ ∈ Ω, the joint pdf/pf fn(x|θ) can be
factored as

fn(x|θ) = u(x)v (r(x), θ)

where function u and v are nonnegative.

The function u may depend on x but not on θ
The function v depends on θ but depends on x only through the
value of the statistic r(x)

Both MLEs and Bayesian estimators depend on data only through
sufficient statistics.
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END OF CHAPTER 7
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