

Chapter 7: Estimation

Sections

- 7.1 Statistical Inference

Bayesian Methods:

- 7.2 Prior and Posterior Distributions
- 7.3 Conjugate Prior Distributions
- 7.4 Bayes Estimators

Frequentist Methods:

- 7.5 Maximum Likelihood Estimators
- 7.6 Properties of Maximum Likelihood Estimators
 - **Skip:** p. 434-441 (EM algorithm and Sampling Plans)
- **Skip:** 7.7 Sufficient Statistics
- **Skip:** 7.8 Jointly Sufficient Statistics
- **Skip:** 7.9 Improving an Estimator

Properties of MLE's

Theorem 7.6.2: MLE's are invariant

If $\hat{\theta}$ is the MLE of θ and $g(\theta)$ is a function of θ
then $g(\hat{\theta})$ is the MLE of $g(\theta)$

Example:

- Let \hat{p} be the MLE of a probability parameter, e.g. the p in $\text{Binomial}(n, p)$.
Then the MLE of the odds, $\frac{p}{1-p}$ is $\frac{\hat{p}}{1-\hat{p}}$

In general this does not hold for Bayes estimators.

- E.g. for square error loss $E(g(\theta)|\mathbf{x}) \neq g(E(\theta|\mathbf{x}))$

Consistency:

- Under fairly typical conditions, e.g. MLEs are unique, the sequence of MLEs is a consistent sequence of estimators of θ , i.e.
 $\hat{\theta}_n(\mathbf{X}) \xrightarrow{P} \theta$

Computation

For MLE's

- In many practical situations the maximization we need is not available analytically or too cumbersome
- There exist many numerical optimization methods, Newton's Method (see definition 7.6.2) is one example.

For Bayesian estimators

- In many practical situations the posterior distribution is not available in closed form
 - This happens if we cannot evaluate the integral for the marginal distribution
 - Instead people either approximate the posterior distribution or take random samples from it, e.g. using Markov Chain Monte Carlo (MCMC) methods

Method of Moments (MOM)

- Let X_1, \dots, X_n be i.i.d. from $f(x|\theta)$ where θ is k dimensional.
- The j^{th} sample moment is defined as $m_j = \frac{1}{n} \sum_{i=1}^n X_i^j$

Method of moments (MOM) estimator: match the theoretical moments and the sample moments and solve for parameters:

$$m_1 = E(X_1|\theta), \quad m_2 = E(X_1^2|\theta), \quad \dots, \quad m_k = E(X_1^k|\theta)$$

Example:

- Let X_1, \dots, X_n be i.i.d. $\text{Gamma}(\alpha, \beta)$. Then

$$E(X) = \frac{\alpha}{\beta} \quad \text{and} \quad E(X_2) = \frac{\alpha(\alpha + 1)}{\beta^2}$$

Find the MOM estimator of α and β

MOM estimators are consistent.

Sufficient Statistics

- A statistic: $T = r(X_1, \dots, X_n)$

Def: Sufficient Statistics

Let X_1, \dots, X_n be a random sample from $f(x|\theta)$ and let T be a statistic. If the conditional distribution of

$$X_1, \dots, X_n | T = t$$

does not depend on θ then T is called a *sufficient statistic*

- The idea: Just as good to have the observed sufficient statistic as it is to have the individual observations of X_1, \dots, X_n
- Can limit our search for a good estimator to sufficient statistics

Sufficient Statistics

Theorem 7.7.1: Factorization Criterion

Let X_1, \dots, X_n be a random sample from $f(x|\theta)$ where $\theta \in \Omega$ is unknown. A statistic $T = r(X_1, \dots, X_n)$ is a sufficient statistic for θ if and only if for all $\mathbf{x} \in \mathbb{R}^n$ and all $\theta \in \Omega$, the joint pdf/pf $f_n(\mathbf{x}|\theta)$ can be factored as

$$f_n(\mathbf{x}|\theta) = u(\mathbf{x})v(r(\mathbf{x}), \theta)$$

where function u and v are nonnegative.

- The function u may depend on \mathbf{x} but not on θ
- The function v depends on θ but depends on \mathbf{x} only through the value of the statistic $r(\mathbf{x})$

Both MLEs and Bayesian estimators depend on data only through sufficient statistics.

END OF CHAPTER 7