Chapter 8: Sampling distributions of estimators

Sections

8.1 Sampling distribution of a statistic

8.2 The Chi-square distributions

8.3 Joint Distribution of the sample mean and sample variance
e Skip: p. 476 - 478

8.4 The t distributions
e Skip: derivation of the pdf, p. 483 - 484

8.5 Confidence intervals

8.6 Bayesian Analysis of Samples from a Normal Distribution
8.7 Unbiased Estimators
8.8 Fisher Information
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Review from Sections 8.1 - 8.4

Let Xy, ..., X, be a random sample from N(u, 0?)

@ Chi-square distribution:
X2, is the same as Gamma(a = m/2, 3 = 1/2)
o2 —
%in where agz%'
@ Also,
1o -
So~Xh1 where S,= > (X — Xn)?

i=1

@ The ty, distribution: If Y ~ x2, and Z ~ N(0, 1) are independent

n
o2

z
then Jvim ~ tm. Also,
Vn(Xn — 1)

S0 (X — xm] v

~t,_y where o = [ P—

O-l
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Chapter 8 — continued 8.5 Confidence intervals

Confidence Interval — A frequentist tool

@ Say we want to estimate 6, or in general g(0)
@ We also want to know “how good” that estimate is.

Def: Confidence Interval (Cl)
Let Xi,..., X, be a random sample from f(x|6), where 6 is unknown
(but not random). Let g(#) be a real-valued function and let A and B be
statistics where

P(A<g(®)<B)>~ V0.
The random interval (A, B) is called a 100~% confidence interval for
g(0). If “=”, the Cl is exact.

4

@ After the random variables Xj, ..., X, have been observed and the
values of A= aand B = b have been computed, the interval (a, b)
is called the observed confidence interval.
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Confidence Interval - Mean of a Normal Distribution
Last time we saw the following example

@ Let Xi,..., X, be a random sample from N(u, o?)
@ Let

n—1

— 1/2
- T (X — Xn)?
XHZEZ)(I and O_/: (ZI'I( 1 I’l) )

has the t,_4 distribution.
@ We can therefore calculate v = P(—c < U < ¢). Turning this
around, we get
. o’ - o'
=P Xp—c—=<pu<Xp+c—
’y ( n \/ﬁ lu’ n+ \/ﬁ>
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Chapter 8 — continued 8.5 Confidence intervals

Confidence Interval - Mean of a Normal Distribution

@ Let Tjy(x) denote the cdf of the 5, distribution.
@ Givenywe canfind csothat P(—c < U < ¢) =7:

vy=P(-c<U<c)=2T,_1(c) — 1

since the t distribution is symmetric around 0. Solving for ¢ we get

1 (7 +1
)

where T, is the quantile function for the t, 4 distribution.
@ So a 100~% confidence interval for p is

- 4 (v+1\ o = 4 (y+1\ o
(o1 (50) 5 %o W (05 77

STA 611 (Lecture 15) Sampling Distributions Oct 30, 2012 5/16




___________ Chapter8_coninued _B85Confidenceintenals
Example — Hotdogs

Exercise 8.5.7 in the book

Data on calorie content in 20 different beef hot dogs from Consumer
Reports (June 1986 issue):

186, 181,176,149, 184,190, 158,139, 175, 148,
152,111,141,153,190, 157,131,149, 135,132

Assume that these numbers are observed values from a random
sample of twenty independent N(u, %) random variables, where 1 and
o2 are unknown.

@ Observed sample mean and ¢’ are

Xp=156.85 and o =22.64201

@ Find a 95% confidence interval for p
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Interpretation of a confidence interval

Confidence intervals are a Frequentist tool

We know that

5% 4 (r+1) o v 4 (1) o
P<Xn_TI7—1 <2>\/E<ILL<X”+ Tn_1 <2 % =7

After observing the data we observe the random interval
@ For example: (146.25,167.45) is an observed 95% confidence
interval for

@ That does NOT mean that P(146.25 < i < 167.45) = 0.95.
For this statement to make sense we need Bayesian thinking and
Bayesian methods.
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Interpretation of a confidence interval

Confidence intervals are a Frequentist tool

One way of thinking of this: Repeated samples.

@ Take a random sample of size n from N(u, 0?) and calculate the
95% confidence interval

@ Take another random sample (of the same size n) and do the
same calculations.

@ Repeat. Many times.

@ Since there is a 95% chance that the random intervals cover the
value of 1 we expect 95% of the intervals to cover the actual value
of u

Problem: We never take more than one sample!
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Properties of a confidence interval - Simulation Study

100
|

80

@ | simulated n=20
r.v. from N(8,22) and
calculated the 95% ClI “
@ | repeated that 100
times

@ 4 of the 100 intervals
do not cover =8 <
(red intervals)

Sample

40

8
Confidence Interval for p
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Non-symmetric confidence intervals

Mean of the normal distribution

More generally we want to find

Plct<U<c)=xv
@ Symmetric confidence interval: Equal probability on either side:

P(qu):P(uzcz)J%7

@ Since the distribution of U is symmetric around 0, the shortest
possible for 1 is the symmetric confidence interval.

@ One-sided confidence interval: All the extra probability is on one
side.
That is, either ¢y = cc or ¢, = 0

STA 611 (Lecture 15) Sampling Distributions Oct 30, 2012 10/16



One-sided Confidence Interval

Def: Lower bound
Let A be a statistic so that

P(A<g(0)) =~ Vo

@ The random interval (A, o) is a one-sided 1007% confidence
interval for g(0)

@ Aisa 100v% lower confidence limit for g(0)
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One-sided Confidence Interval

Def: Upper bound
Let B be a statistic so that

P(g(0) < B)>~ Vo

@ The random interval (—oo, B) is a one-sided 100v% confidence
interval for g(9).

@ Bisa 100v% upper confidence limit for g(0)
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Chapter 8 — continued 8.5 Confidence intervals

One-sided Confidence Interval - Mean of a normal

@ Let Xi,..., X, be arandom sample from N(u, o?), both 1 and o2
unknown.
@ Find the one-sided 100v% confidence intervals for

@ Find the observed 95% upper confidence limit for . for the hotdog
example.
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Confidence intervals for other distributions

Def: Pivotal

Let X = (Xj,..., X,) be a random sample from a distribution that
depends on parameter 6. Let V(X, ) be a random variable whose
distribution is the same for all . Then V is called a pivotal quantity.

To use this we need to be able to invert the pivotal relationship: find a
function r(v, x) so that

r(V(X,0),X) = g(9)
If the r function is increasing in v for every x, V has a continuous
distribution with cdf F(v) and 2 — vy =+, then
A=r(F'(m)X) and B=r(F ()X

are the endpoints of an exact 100v% confidence interval
(Theorem 8.5.3).
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Confidence interval using Pivotal quantities

Example: The rate parameter 0 of the exponential distribution
@ Xi,...,Xpiid. Expo(0)
@ Find the v% upper confidence limit for 6
@ Find a symmetric v% confidence interval for 6

Example: Variance of the normal distribution
@ Xy,...,Xpiid. N(u,o?), both unknown.
@ Find a symmetric % confidence interval for o2

@ Find the observed symmetric 7% confidence interval for o2 for the
hotdog example
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Chapter 8 — continued 8.5 Confidence intervals

Problems with interpretation of a confidence interval

@ Example 8.5.11 is an interesting example.

@ Say Xi, Xz are i.i.d. Uniform(6 — 0.5,60 + 0.5)

@ Let Y7 = min(Xj, X2) and Yo = max(Xi, Xz).
Then (Y1, Y2) is a 50% confidence interval for 6

@ However: If we observe Y; and Y, that are more than 0.5 apart,
that is y» — y4 > 0.5 then we know for a certainty that (y1, y»)
contains 0! Yet we only assign 50% “confidence” to that interval,
which ignores information we have.
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