

Chapter 9: Hypothesis Testing

Sections

- 9.1 Problems of Testing Hypotheses
- Skip: 9.2 Testing Simple Hypotheses
- Skip: 9.3 Uniformly Most Powerful Tests
- Skip: 9.4 Two-Sided Alternatives
- 9.5 The t Test
- 9.6 Comparing the Means of Two Normal Distributions
- 9.7 The F Distributions
- 9.8 Bayes Test Procedures
- 9.9 Foundational Issues

Uniformly Most Powerful Tests

$$H_0 : \theta \in \Omega_0 \quad \text{vs} \quad H_1 : \theta \in \Omega_1$$

- A test δ^* is a *uniformly most powerful test* at level α_0 if for any other level α_0 test δ

$$\pi(\theta|\delta) \leq \pi(\theta|\delta^*) \quad \text{for all } \theta \in \Omega_1$$

I.o.w: It has the lowest probability of type II error of any test, uniformly for all $\theta \in \Omega_1$.

- We control the probability of type I error by setting the level (size) of the test low. We then want to control the probability of type II error.
- If $\pi(\theta|\delta^*)$ is high for all $\theta \in \Omega_1$, the test is often called “powerful”
- In a large class of problems (the distribution has a “monotone likelihood ratio”) we can find a uniformly most powerful test for one-sided hypotheses (Ch. 9.3).

The *t*-Test

- The *t*-Test is a test for hypotheses concerning the mean parameter in the normal distribution when the variance is also unknown.
- The test is based on the *t* distribution

The setup for the next few slides:

- Let X_1, \dots, X_n be i.i.d. $N(\mu, \sigma^2)$ and consider the hypotheses

$$H_0 : \mu \leq \mu_0 \quad \text{vs.} \quad H_1 : \mu > \mu_0 \quad (1)$$

The parameter space here is $-\infty < \mu < \infty$ and $\sigma^2 > 0$, i.e.

$$\Omega = (-\infty, \infty) \times (0, \infty)$$

And

$$\Omega_0 = (-\infty, \mu_0] \times (0, \infty) \quad \text{and} \quad \Omega_1 = (\mu_0, \infty) \times (0, \infty)$$

The one-sided *t*-Test

- Let

$$U = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{\sigma'} \quad \text{where} \quad \sigma' = \left(\frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \right)^{1/2}$$

- If $\mu = \mu_0$ then U has the *t* distribution
- Tests based on U are called *t tests*

The one-sided t -Test

- Let T_n^{-1} be the quantile function of the t_n distribution

Theorem 9.5.1

The test δ that rejects H_0 in (1) if $U \geq T_{n-1}^{-1}(1 - \alpha_0)$ has size α_0 and a power function with the following properties

- $\pi(\mu_0, \sigma^2 | \delta) = \alpha_0$
- $\pi(\mu, \sigma^2 | \delta) < \alpha_0$ for $\mu < \mu_0$
- $\pi(\mu, \sigma^2 | \delta) > \alpha_0$ for $\mu > \mu_0$
- $\pi(\mu, \sigma^2 | \delta) \rightarrow 0$ as $\mu \rightarrow -\infty$
- $\pi(\mu, \sigma^2 | \delta) \rightarrow 1$ as $\mu \rightarrow \infty$

The complete power function

For the one-sided t -test

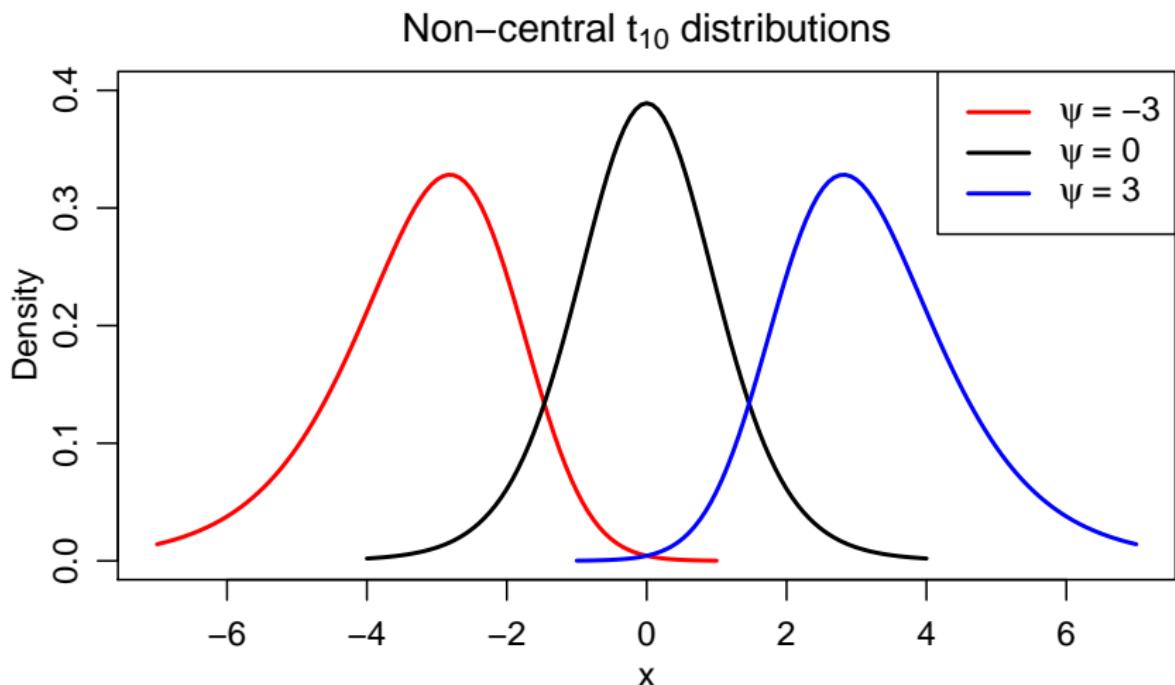
To calculate the power function $\pi(\mu, \sigma^2 | \delta)$ exactly we need the non-central t_m distributions:

Def: Non-central t_m distributions

Let $W \sim N(\psi, 1)$ and $Y \sim \chi_m^2$ be independent. The distribution of

$$X = \frac{W}{(Y/m)^{1/2}}$$

is called the *non-central t distribution with m degrees of freedom and non-centrality parameter ψ*

Non-central t_m distribution

The complete power function

For the one-sided *t*-test

Theorem 9.5.3

U has the non-central t_{n-1} distribution with non-centrality parameter $\psi = \sqrt{n}(\mu - \mu_0)/\sigma$.

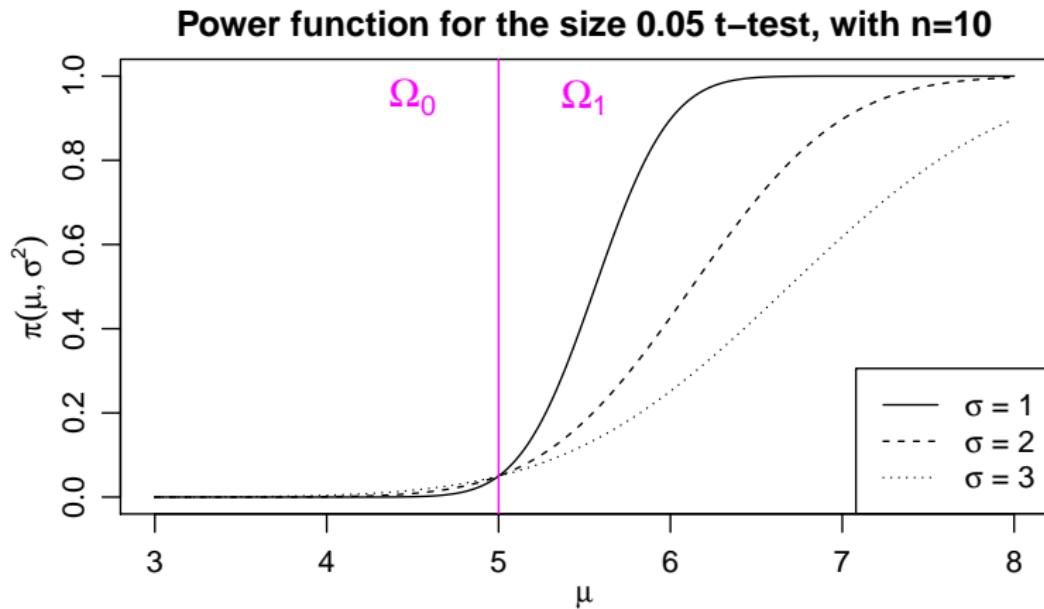
The power function of the *t*-test that rejects H_0 in (1) if $U \geq T_{n-1}^{-1}(1 - \alpha_0) = c_1$ is

$$\pi(\mu, \sigma^2 | \delta) = 1 - T_{n-1}(c_1 | \psi)$$

- Can use the R function `1 - pt(q=c1, df=n-1, ncp=psi)`

Power function for the one-sided t -test

Example: $n = 10$, $\mu_0 = 5$, $\alpha_0 = 0.05$



Note that the power function is a function of both σ^2 and μ

p-value for the one-sided *t*-Test

Theorem 9.5.2: p-values for *t* Tests

Let u be the observed value of U .

The p-value for the hypothesis in (1) is $1 - T_{n-1}(u)$.

Example: Acid Concentration in Cheese (Example 8.5.4)

- Have a random sample of $n = 10$ lactic acid measurements from cheese, assumed to be from a normal distribution with unknown mean and variance.
- Observed: $\bar{x}_n = 1.379$ and $\sigma' = 0.3277$
- Perform the level $\alpha_0 = 0.05$ *t*-test of the hypotheses

$$H_0: \mu \leq 1.2 \quad \text{vs} \quad H_1: \mu > 1.2$$

- Compute the p-value

The other one-sided *t*-Test

- Now consider the hypotheses

$$H_0 : \mu \geq \mu_0 \quad \text{vs.} \quad H_1 : \mu < \mu_0 \quad (2)$$

Corollary 9.5.1

The test δ that rejects H_0 if $U \leq T_{n-1}^{-1}(\alpha_0)$ has size α_0 and a power function with the following properties

- (i) $\pi(\mu_0, \sigma^2 | \delta) = \alpha_0$
- (ii) $\pi(\mu, \sigma^2 | \delta) > \alpha_0$ for $\mu < \mu_0$
- (iii) $\pi(\mu, \sigma^2 | \delta) < \alpha_0$ for $\mu > \mu_0$
- (iv) $\pi(\mu, \sigma^2 | \delta) \rightarrow 1$ as $\mu \rightarrow -\infty$
- (v) $\pi(\mu, \sigma^2 | \delta) \rightarrow 0$ as $\mu \rightarrow \infty$

Power function and p-value for the other one-sided *t*-Test

Theorem 9.5.2: p-values for *t* Tests

Let u be the observed value of U .

The p-value for the hypothesis in (2) is $T_{n-1}(u)$.

Theorem 9.5.3

U has the non-central t_{n-1} distribution with non-centrality parameter $\psi = \sqrt{n}(\mu - \mu_0)/\sigma$.

The power function of the t-test that rejects H_0 in (2) if $U \leq T_{n-1}^{-1}(\alpha_0) = c_2$ is

$$\pi(\mu, \sigma^2 | \delta) = T_{n-1}(c_2 | \psi)$$

Two-sided *t*-test

Consider now the test with a two-sided alternative hypothesis:

$$H_0 : \mu = \mu_0 \quad \text{vs.} \quad H_1 : \mu \neq \mu_0 \quad (3)$$

- Let δ be the test that rejects H_0 iff $|U| \geq T_{n-1}^{-1}(1 - \alpha_0/2) = c$
- Then δ is a size α_0 test
- The power function is

$$\pi(\mu, \sigma^2 | \delta) = T_{n-1}(-c|\psi) + 1 - T_{n-1}(c|\psi)$$

- If u is the observed value of U then the p-value is $2(1 - T_{n-1}(|u|))$

The *t* test is a likelihood ratio test (see p. 583 - 585 in the book)

The two-sample t -test

Comparing the means of two populations

- X_1, \dots, X_m i.i.d. $N(\mu_1, \sigma^2)$ and
 Y_1, \dots, Y_n i.i.d. $N(\mu_2, \sigma^2)$
- The **variance is the same** for both samples, but unknown

We are interested in testing one of these hypotheses:

- $H_0 : \mu_1 \leq \mu_2$ vs. $H_1 : \mu_1 > \mu_2$
- $H_0 : \mu_1 \geq \mu_2$ vs. $H_1 : \mu_1 < \mu_2$
- $H_0 : \mu_1 = \mu_2$ vs. $H_1 : \mu_1 \neq \mu_2$

Power function is now a function of 3 parameters: $\pi(\mu_1, \mu_2, \sigma^2 | \delta)$

Two-sample t statistic

Let $\bar{X}_m = \frac{1}{m} \sum_{i=1}^m X_i$ and $\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$

$$S_X^2 = \sum_{i=1}^m (X_i - \bar{X}_m)^2 \quad \text{and} \quad S_Y^2 = \sum_{i=1}^n (Y_i - \bar{Y}_n)^2$$

$$U = \frac{\sqrt{m+n-2} (\bar{X}_m - \bar{Y}_n)}{\left(\frac{1}{m} + \frac{1}{n}\right)^{1/2} (S_X^2 + S_Y^2)^{1/2}}$$

- Theorem 9.6.1: If $\mu_1 = \mu_2$ then $U \sim t_{m+n-2}$
- Theorem 9.6.4: For any μ_1 and μ_2 , U has the non-central t_{m+n-2} distribution with non-centrality parameter

$$\psi = \frac{\mu_1 - \mu_2}{\sigma \left(\frac{1}{m} + \frac{1}{n}\right)^{1/2}}$$

Two-sample t test – summary

Proofs similar to the regular t -test

a) $H_0 : \mu_1 \leq \mu_2$ vs. $H_1 : \mu_1 > \mu_2$

- Level α_0 test: Reject H_0 iff $U \geq T_{m+n-2}^{-1}(1 - \alpha_0)$
- p-value: $1 - T_{m+n-2}(u)$

b) $H_0 : \mu_1 \geq \mu_2$ vs. $H_1 : \mu_1 < \mu_2$

- Level α_0 test: Reject H_0 iff $U \leq T_{m+n-2}^{-1}(\alpha_0)$
- p-value: $T_{m+n-2}(u)$

c) $H_0 : \mu_1 = \mu_2$ vs. $H_1 : \mu_1 \neq \mu_2$

- Level α_0 test: Reject H_0 iff $|U| \geq T_{m+n-2}^{-1}(1 - \alpha_0/2)$
- p-value: $2(1 - T_{m+n-2}(|u|))$

The two-sample t -test is a likelihood ratio test (see p. 592)

Two-sample t test – unequal variances

- We can extend the two sample t -test to a problem where the variances of the X_i 's and Y_j 's are not equal but the ratio of them is known, i.e. $\sigma_1^2 = k\sigma_2^2$ – Not very practical

In general, the problem where the variances are not equal is very hard.

- Proposed test-statistics do not have known distribution, but approximations have been obtained
- Example: The Welch statistic

$$V = \frac{\bar{X}_m - \bar{Y}_n}{\left(\frac{s_x^2}{m(m-1)} + \frac{s_y^2}{n(n-1)} \right)^{1/2}}$$

can be approximated by a t distribution

- Example: The distribution of the likelihood ratio statistic can be approximated by the χ^2_1 distribution if the sample size is large enough

F-distributions

- In light of the previous slide, it would be nice to have a test of whether the variances in the two normal populations are equal
→ need the $F_{m,n}$ distributions

Def: $F_{m,n}$ -distributions

Let $Y \sim \chi_m^2$ and $W \sim \chi_n^2$ be independent. The distribution of

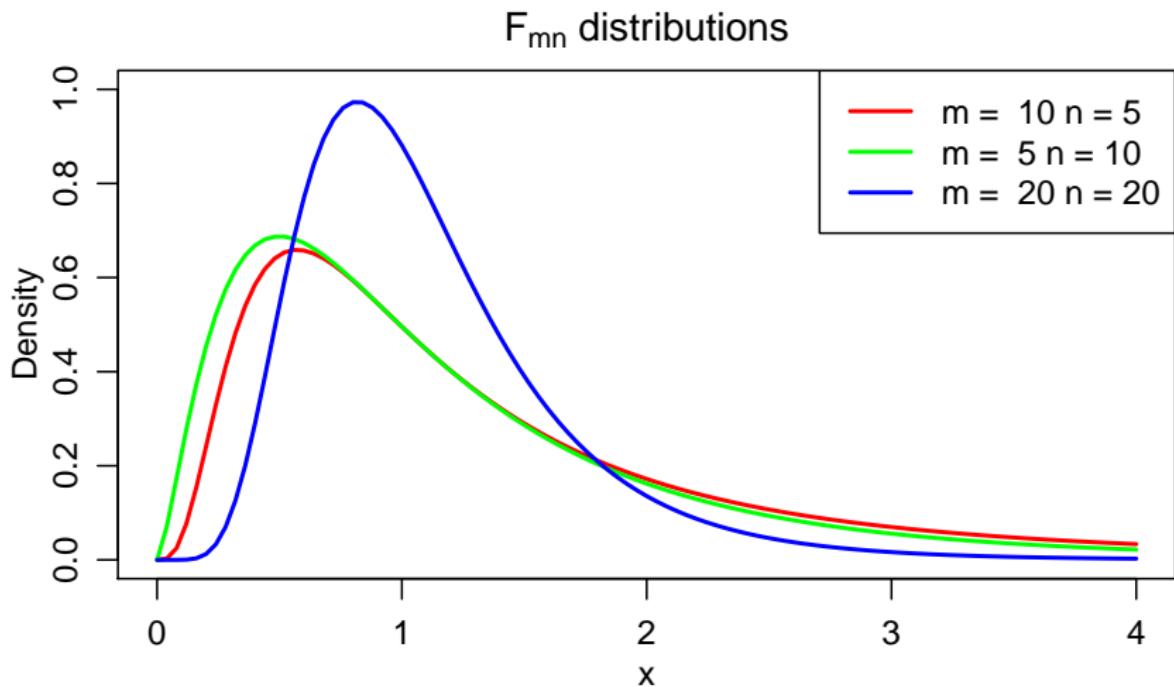
$$X = \frac{Y/m}{W/n} = \frac{nY}{mW}$$

is called the *F distribution with m and n degrees of freedom*

The pdf of the $F_{m,n}$ distribution is

$$f(x) = \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)} \frac{x^{m/2-1}}{(mx+n)^{(m+n)/2}} \quad x > 0$$

F-distributions



Properties of the *F*-distributions

- The 0.95 and 0.975 quantiles of the $F_{m,n}$ distribution is tabulated in the back of the book for a few combinations of m and n

Theorem 9.7.2: Two properties

- (i) If $X \sim F_{m,n}$ then $1/X \sim F_{n,m}$
- (ii) If $Y \sim t_n$ then $Y^2 \sim F_{1,n}$

Comparing the variances of two normals

Comparing the variances of two populations

- X_1, \dots, X_m i.i.d. $N(\mu_1, \sigma_1^2)$ and
 Y_1, \dots, Y_n i.i.d. $N(\mu_2, \sigma_2^2)$ All four parameters unknown

Consider the hypotheses:

$$(I) \quad H_0 : \sigma_1^2 \leq \sigma_2^2 \quad \text{vs.} \quad H_1 : \sigma_1^2 > \sigma_2^2$$

and the test that rejects H_0 if $V \geq c$, where

$$V = \frac{S_X^2 / (m - 1)}{S_Y^2 / (n - 1)}$$

This test is called an *F-test*

- $\frac{\sigma_2^2}{\sigma_1^2} V \sim F_{m-1, n-1}$
- If $\sigma_1^2 = \sigma_2^2$ then $V \sim F_{m-1, n-1}$

The *F* test

Let $G_{m,n}(x)$ be the cdf of the $F_{m,n}$ distribution

Theorem 9.7.4

Let δ be the test that rejects H_0 in

$$H_0 : \sigma_1^2 \leq \sigma_2^2 \quad \text{vs.} \quad H_1 : \sigma_1^2 > \sigma_2^2$$

if $V \geq c = G_{m-1,n-1}^{-1}(1 - \alpha_0)$. Then δ is of size α_0 and

- $\pi(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2 | \delta) = 1 - G_{m-1,n-1} \left(\frac{\sigma_2^2}{\sigma_1^2} c \right)$ and
- p-value = $1 - G_{m-1,n-1}(v)$, where v is the observed value of V