
Chapter 9

Chapter 9: Hypothesis Testing
Sections

9.1 Problems of Testing Hypotheses
Skip: 9.2 Testing Simple Hypotheses
Skip: 9.3 Uniformly Most Powerful Tests
Skip: 9.4 Two-Sided Alternatives
9.5 The t Test
9.6 Comparing the Means of Two Normal Distributions
9.7 The F Distributions
9.8 Bayes Test Procedures
9.9 Foundational Issues
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Chapter 9 9.8 Bayes Test Procedures

Bayesian test procedures

All inference about a parameter is based on the posterior distribution,
including hypothesis testing. Let

H0 : θ ∈ Ω0 vs. H1 : θ ∈ Ω1

Then we can obtain:
P(θ ∈ Ω0|x) = probability that H0 is true
P(θ ∈ Ω1|x) = probability that H1 is true

A straightforward test procedure:
Reject H0 if P(θ ∈ Ω0|x) < P(θ ∈ Ω1|x)

Critical region: S1 =
{

x : P(θ ∈ Ω1|x) > 1
2

}
However, since hypothesis testing is a decision problem we should
also consider a loss function
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Chapter 9 9.8 Bayes Test Procedures

Bayesian test procedures

Loss function: L(θ,a) = the loss that occurs when θ is the true
value of the parameter and action a is taken
Bayes test procedure: Minimize posterior expected loss

We will first consider simple hypotheses:
Let X1, . . . ,Xn be a random sample from f (x |θ) where the
parameter space contains only two values: Ω = {θ0, θ1}.
We want to test

H0 : θ = θ0 vs. H1 : θ = θ1

See chapter 9.2 for a frequentist take on this situation
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Chapter 9 9.8 Bayes Test Procedures

Bayesian test procedures

Possible decisions (actions):
d0: do not reject H0 (“accept H0”)
d1: reject H0 (“accept H1”)

We specify the losses from making a wrong decision. For example:
L(θ0,d1) = w0: Loss for d1 when H0 is true (type I error)
L(θ1,d0) = w1: Loss for d0 when H1 is true (type II error)

No loss if we make the correct decision:
L(θ1,d1) = 0: The loss when d1 is chosen and H1 is true
L(θ0,d0) = 0: The loss when d0 is chosen and H0 is true

This loss function L(θ,d) can be summarized as

L(θi ,dj) d0 d1
θ0 0 w0
θ1 w1 0

This is the generalized 0-1 loss
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Chapter 9 9.8 Bayes Test Procedures

Bayesian test procedures

L(θi ,dj) d0 d1
θ0 0 w0
θ1 w1 0

Let p(θ) be the prior pf of θ
Let p(θ0) = p0 and p(θ1) = p1

Expected loss for a test procedure δ:

r(δ) = p0w0α(δ) + p1w1β(δ)

where

α(δ) = P(chose d1|θ = θ0) = Prob. of type I error
β(δ) = P(chose d0|θ = θ1) = Prob. of type II error

We want to minimize r(δ)
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Chapter 9 9.8 Bayes Test Procedures

Bayes test procedure for simple hypotheses

H0 : θ = θ0 vs. H1 : θ = θ1

Let X1, . . . ,Xn be a random sample from f (x|θ) and let
f0(x) = f (x|θ0) and f1(x) = f (x|θ1)

Theorem 9.2.1
Let δ∗ be the test that rejects H0 if af0(x) < bf1(x). Then for every other
test procedure δ

aα(δ∗) + bβ(δ∗) ≤ aα(δ) + bβ(δ)

δ∗ can either reject or not for af0(x) = bf1(x).

Set a = p0w0 and b = p1w1 and it follows that δ∗ minimizes the
expected loss and is therefore a Bayes test procedure
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Chapter 9 9.8 Bayes Test Procedures

Bayes test procedure for simple hypotheses

In summary: The Bayes test procedure for testing the simple
hypotheses

H0 : θ = θ0 vs. H1 : θ = θ1

is to reject H0 if
p0w0f0(x) < p1w1f1(x)

This is the same as the test that rejects H0 if

p(θ0|x) ≤ w1

w0 + w1

or equivalently if p(θ1|x) > w0
w0+w1
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Chapter 9 9.8 Bayes Test Procedures

Bayes test procedure in general

Now lets come back to the general hypotheses

H0 : θ ∈ Ω0 vs. H1 : θ ∈ Ω1

and consider the generalized 0-1 loss:
L(θ,dj) d0 d1
θ ∈ Ω0 0 w0
θ ∈ Ω1 w1 0

More generally: w0 and w1 could be functions of θ

Bayes test procedure under generalized 0-1 loss

The Bayes test procedure is to reject H0 if

P(H0 is true |x) = P(θ ∈ Ω0|x) ≤ w1

w0 + w1

So the test we saw on slide 2 is a special case of using a 0-1 loss
function with w0 = w1
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Chapter 9 9.8 Bayes Test Procedures

Example: Test about the mean of the normal

Let X1, . . . ,Xn be i.i.d. N(θ,1/τ) and assume that the prior
distribution of (θ, τ) is the Normal-Gamma distribution.
Suppose we want to test the hypotheses

H0 : θ ≤ θ0 vs. H1 : θ > θ0

Suppose also we assume the generalized 0-1 loss from the
previous slide
The Bayes test procedure rejects H0 if(

λ1α1

β1

)1/2

(µ1 − θ0) ≥ T−1
2α1

(
1− w1

w1 + w0

)
where µ1, λ1, α1 and β1 are the parameters of the posterior
Normal-Gamma distribution
What is the Bayes test procedure for the improper prior
p(θ, τ) = 1/τ ?

Note: Typo Example 9.8.5: U ≤ T−1
n−1(1− α0) should be U ≤ −T−1

n−1(1− α0) = T−1
n−1(α0)
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Chapter 9 9.8 Bayes Test Procedures

Two-sided alternatives

H0 : θ = θ0 vs. H1 : θ 6= θ0

If the posterior distribution of θ is continuous then

P(θ ∈ Ω0|x) = P(θ = θ0|x) = 0

In stead we can consider the hypotheses

H0 : |θ − θ0| ≤ d vs. H1 : |θ − θ0| > d

where d represents what is a meaningful difference between θ and θ0

This forces us to think about what is a meaningful difference

The Bayes test procedure (under the generalize 0-1 loss) is then
simply to reject H0 if

P(|θ − θ0| ≤ d |x)) ≤ w1

w0 + w1
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Chapter 9 9.9 Foundational Issues

Significance level and sample size

Standard practice:
Specify a level of significance α0 and then find a test that has a
large power function on Ω1 (small type II probability)
Traditional α0: 0.10, 0.05, 0.01 (0.05 is the most commonly used)
Significance level α0 is chosen in accordance to how serious the
consequences of type I error are.
Worse consequences⇒ smaller α0

A cautious experimenter: Choose α0 = 0.01 (Doesn’t want to
reject H0 unless there is strong evidence that H0 is not true)

Problem: For a large sample size, using α0 = 0.01 can actually lead to
a test procedure that will reject H0 for certain samples that, in fact,
provide stronger evidence for H0 than H1
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Chapter 9 9.9 Foundational Issues

Significance level and sample size
Example

Let X1, . . . ,Xn be i.i.d. N(θ,1) and we want to test

H0 : θ = 0 vs. H1 : θ = 1

We set α0 = 0.01, so the probability of type I error is α(δ∗) = 0.01
The test procedure δ∗ that then minimizes the probability of type II
error rejects H0 if X n ≥ 2.326/

√
n

The probability of type II error is

β(δ∗) = Φ(2.326−
√

n)

This test is equivalent to rejecting H0 if (shown in Chapter 9.2)

f (x|θ1)

f (x|θ0)
≥ k = exp(2.326

√
n − 0.5n)

That is, we reject if the data is at least k times as likely under H1
as they are under H0
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Chapter 9 9.9 Foundational Issues

Significance level and sample size
Example

The probabilities of type I and type II errors (α(δ∗) and β(δ∗)) and k for
n = 1, n = 25 and n = 100:

n α(δ∗) β(δ∗) k
1 0.01 0.91 6.21

25 0.01 0.0038 0.42
100 0.01 8× 10−15 2.5× 10−12

For larger n we get much more cautious about they type II error
than the type I error!
For n = 1: H0 will be rejected if the observed data are at least 6.21
times as likely under H1 as they are under H0

For n = 100: H0 will be rejected for observed data that are millions
of times more likely under H0 than they are under H1
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Chapter 9 9.9 Foundational Issues

Significance level and sample size

The problem:
The α0 level is fixed and then we minimize prob. of type II error,
β(δ)

For large sample sizes we can get extremely low β(δ), relative to
α(δ)

Possible solutions:
Pick smaller α0 for larger sample sizes
Rather than fixing α0, take both α(δ) and β(δ) into account e.g.

100α(δ) + β(δ)

here the type I error is deemed 100 times more serious that type II
error
Bayesian methods achieve this
There are also frequentist methods that do this (Lehman 1958)
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Chapter 9 9.9 Foundational Issues

Power and sample size
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Power function for the size 0.05 two−sided t−test

H0: µ = 5
H1: µ ≠ 5

n = 10
n = 100
n = 1000
n = 10000

Power tends to increase as sample size increases
Suppose the true value of µ is 4.95. Would we want to reject
H0 : µ = 5 in that case?
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Power and sample size
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Chapter 9 9.9 Foundational Issues

Statistically significant

Suppose the true value of µ is 4.95.
For a large n it is very likely that we reject H0 : µ = 5.
The results will be called “statistically significant”
That does not necessarily mean that µ is “significantly” different
from 5 in a practical way

Possible solutions
Use a much smaller significance level (see figure on next slide)
Use an interval in the null hypothesis, e.g. H0 : a1 ≤ µ ≤ a2

Consider doing estimation instead of hypothesis testing - use
confidence intervals
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Chapter 9 9.9 Foundational Issues

Sample size and power
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Power function for n = 1000 for different α0 levels.
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Chapter 9

END OF CHAPTER 9

STA 611 (Lecture 19) Hypothesis Testing Nov 13, 2012 18 / 18


	Chapter 9
	9.8 Bayes Test Procedures
	9.9 Foundational Issues
	 


