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Bayesian test procedures

All inference about a parameter is based on the posterior distribution,
including hypothesis testing. Let

Hy:0€Qp vs. Hy:0 e Qq

Then we can obtain:
@ P(6 € Qq|x) = probability that Hy is true
@ P(6 € Q4|x) = probability that H; is true

A straightforward test procedure:

@ Reject Hy if P(6 € Qo|x) < P(6 € Q4]x)

e Critical region: Sy = {x: P(6 € Q|x) > }}
However, since hypothesis testing is a decision problem we should
also consider a loss function
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Bayesian test procedures

@ Loss function: L(6, a) = the loss that occurs when 6 is the true
value of the parameter and action a is taken

@ Bayes test procedure: Minimize posterior expected loss

We will first consider simple hypotheses:

@ Let Xi,..., X, be a random sample from f(x|0) where the
parameter space contains only two values: Q = {6g, 61 }.

@ We want to test
Hy:0=186y vs. Hi : 6 =6,

@ See chapter 9.2 for a frequentist take on this situation
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Bayesian test procedures

Possible decisions (actions):
@ dj: do not reject Hy (“accept Hy”)
@ d;: reject Hy (“accept Hy”)

We specify the losses from making a wrong decision. For example:
@ L(0y,d) = wp: Loss for dy when Hy is true (type | error)
@ L(0¢,dy) = wy: Loss for dy when H, is true (type Il error)

No loss if we make the correct decision:
@ L(61,d;) = 0: The loss when d; is chosen and H; is true
@ L(6p,dp) = 0: The loss when dj is chosen and Hj is true
This loss function L(6, d) can be summarized as
L(6i,d)) | do
Ao 0 wy Thisis the generalized 0-1 loss
91 Wy 0
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Chapter 9 9.8 Bayes Test Procedures

Bayesian test procedures

L(0;,dj) | do o
fo 0 Wo
01 Wy 0

@ Let p(#) be the prior pf of ¢
@ Let p(fo) = po and p(61) = p
@ Expected loss for a test procedure §:

r(6) = powoc(5) + p1 w1 5(6)
where

a(0) = P(chose dy|0 = 6y) = Prob. of type | error
B(0) = P(chose dy|é = 01) = Prob. of type Il error

We want to minimize r(9)
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- Cheplero O98BajesTestProcedures
Bayes test procedure for simple hypotheses

H0:(9:90 VS. H120:91

Let Xi,..., X, be a random sample from f(x|6) and let
fo(x) = f(x|6p) and fi(x) = f(x|604)

Theorem 9.2.1
Let 6* be the test that rejects Hj if afy(x) < bf;(x). Then for every other
test procedure §

aa(5*) + bB(5*) < aa(s) + bB(o)

0* can either reject or not for afy(x) = bf;(x).

@ Set a= pygwp and b = p;wy and it follows that §* minimizes the
expected loss and is therefore a Bayes test procedure
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Bayes test procedure for simple hypotheses

In summary: The Bayes test procedure for testing the simple
hypotheses

Hy:0=06y wvs. Hy:0 =04
is to reject Hy if
PoWofo(X) < p1wifi(X)

This is the same as the test that rejects Hy if

WH

Oy1x) <
p(°|)—w0+w1

or equivalently if p(61[x) > 1
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Bayes test procedure in general

@ Now lets come back to the general hypotheses
Hy:0€Qy vs. H;:0¢eQy
and consider the generalized 0-1 loss:
L(ea dj) dO d1
0 € Qo 0 Wo
ey |wy O
@ More generally: wy and wy could be functions of 0

Bayes test procedure under generalized 0-1 loss
The Bayes test procedure is to reject Hy if

Wi
Wo + Wy

P(Hy is true |x) = P(0 € Qp|x) <

So the test we saw on slide 2 is a special case of using a 0-1 loss
function with wy = wy
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Example: Test about the mean of the normal

@ Let Xi,..., Xy beiid. N(0,1/7) and assume that the prior
distribution of (0, 7) is the Normal-Gamma distribution.
@ Suppose we want to test the hypotheses

Hy:0<6y vs. Hyj:0>86

@ Suppose also we assume the generalized 0-1 loss from the
previous slide
@ The Bayes test procedure rejects Hy if

May )2 1 < Wy )
Aot 60> T (1
( B ) (11 =0) 2 Too, wy + W

where 14, Ay, a1 and 3¢ are the parameters of the posterior
Normal-Gamma distribution
@ What is the Bayes test procedure for the improper prior
p(0,7)=1/17?
Note: Typo Example 9.8.5: U < T, ", (1 — ag) should be U < —T, ', (1 — ag) = T, ", (o)
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Two-sided alternatives

H029:90 VS. H1197é90

@ If the posterior distribution of ¢ is continuous then
P8 € Qp|x) = P(6 =6y|x) =0
In stead we can consider the hypotheses
Ho:160—6p] <d vs. Hi:|0—06>d
where d represents what is a meaningful difference between 6 and 6,
@ This forces us to think about what is a meaningful difference

@ The Bayes test procedure (under the generalize 0-1 loss) is then
simply to reject Hj if
Wi

Wo + Wi

P(|6 = 60| < dx)) <
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Significance level and sample size

Standard practice:
@ Specify a level of significance ag and then find a test that has a
large power function on Q4 (small type Il probability)
@ Traditional ag: 0.10, 0.05, 0.01 (0.05 is the most commonly used)
@ Significance level ag is chosen in accordance to how serious the

consequences of type | error are.
Worse consequences = smaller ag

@ A cautious experimenter: Choose ag = 0.01 (Doesn’t want to
reject Hy unless there is strong evidence that Hy is not true)

Problem: For a large sample size, using cg = 0.01 can actually lead to

a test procedure that will reject Hy for certain samples that, in fact,
provide stronger evidence for Hy than H;
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Significance level and sample size

Example

@ Let Xj,..., X, bei.id. N(#,1) and we want to test
Ho:HZO VS. H139:1

@ We set ap = 0.01, so the probability of type | error is a(6*) = 0.01

@ The test procedure §* that then minimizes the probability of type Il
error rejects Hy if X, > 2.326//n

@ The probability of type Il error is

B(6*) = d(2.326 — /n)
@ This test is equivalent to rejecting Hy if (shown in Chapter 9.2)
f(x61)
f(x60)

That is, we reject if the data is at least k times as likely under H;
as they are under Hj

> k = exp(2.326y/n — 0.5n)
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Significance level and sample size

Example

The probabilities of type | and type Il errors («(6*) and 5(6*)) and k for
n=1,n=25and n=100:

n_a(")  B() K
1001 091 6.21
25 0.01  0.0038 0.42

100 0.01 8x10" 25x 10712

@ For larger n we get much more cautious about they type Il error
than the type | error!

@ For n=1: Hy will be rejected if the observed data are at least 6.21
times as likely under Hy as they are under Hy

@ For n =100: Hy will be rejected for observed data that are millions
of times more likely under Hy than they are under H;
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Significance level and sample size

The problem:
@ The og level is fixed and then we minimize prob. of type Il error,
B(5)
@ For large sample sizes we can get extremely low 3(4), relative to
a(d)

Possible solutions:
@ Pick smaller oy for larger sample sizes
@ Rather than fixing «ag, take both «(d) and 3(¢) into account e.g.

100a(0) + 5(9)
here the type | error is deemed 100 times more serious that type Il
error
@ Bayesian methods achieve this

@ There are also frequentist methods that do this (Lehman 1958)
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Power and sample size

Power function for the size 0.05 two-sided t-test
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@ Power tends to increase as sample size increases

@ Suppose the true value of u is 4.95. Would we want to reject
Hp : 1 =5 in that case?
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Power and sample size

Power function for the size 0.05 two-sided t-test
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Statistically significant

@ Suppose the true value of p is 4.95.
@ For alarge nitis very likely that we reject Hy : = 5.
@ The results will be called “statistically significant”

@ That does not necessarily mean that p is “significantly” different
from 5 in a practical way

Possible solutions
@ Use a much smaller significance level (see figure on next slide)
@ Use an interval in the null hypothesis, e.g. Hy: a1 < u < a

@ Consider doing estimation instead of hypothesis testing - use
confidence intervals

STA 611 (Lecture 19) Hypothesis Testing Nov 13, 2012 16/18



Sample size and power

Power function for the size 0.05 two-sided t—test
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Power function for n = 1000 for different «q levels.
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Chapter 9

END OF CHAPTER 9
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