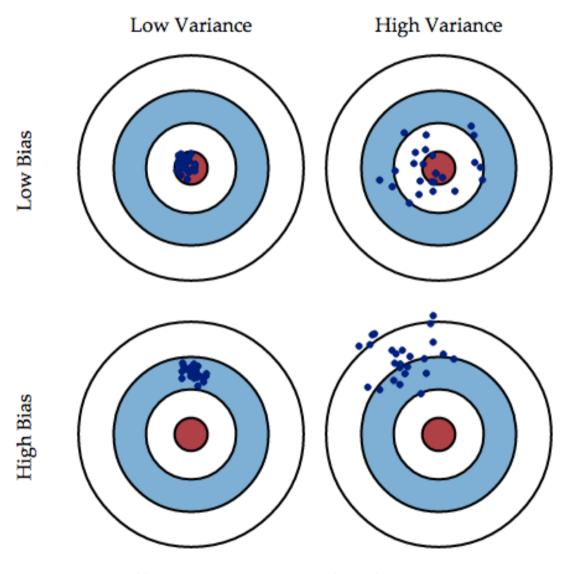
Variance-Bias tradeoff

Prediction error

Prediction error is driven by three factors:

- (1) Variance
- (2) Bias
- (3) Noise

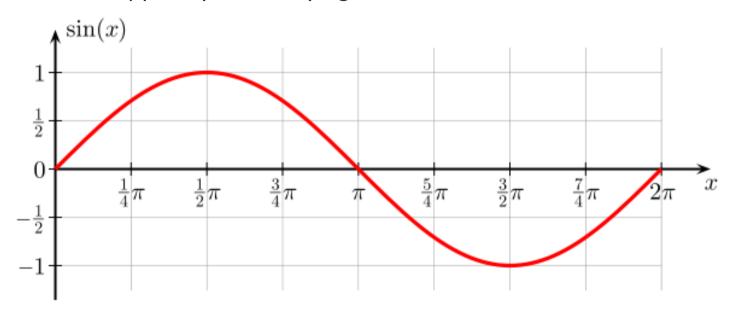
Variance-Bias Tradeoff



From: http://scott.fortmann-roe.com/docs/BiasVariance.html

Variance-Bias Tradeoff – another look

Suppose you are trying to learn the sine function:



Suppose also that your dataset consists of only two points.

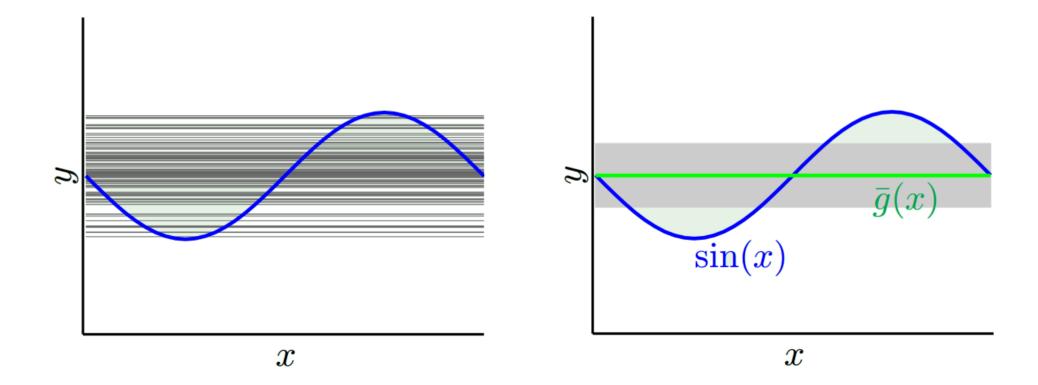
We'll try two different models:

Constant: $H_0(x) = b$

Linear: $H_1(x) = ax + b$

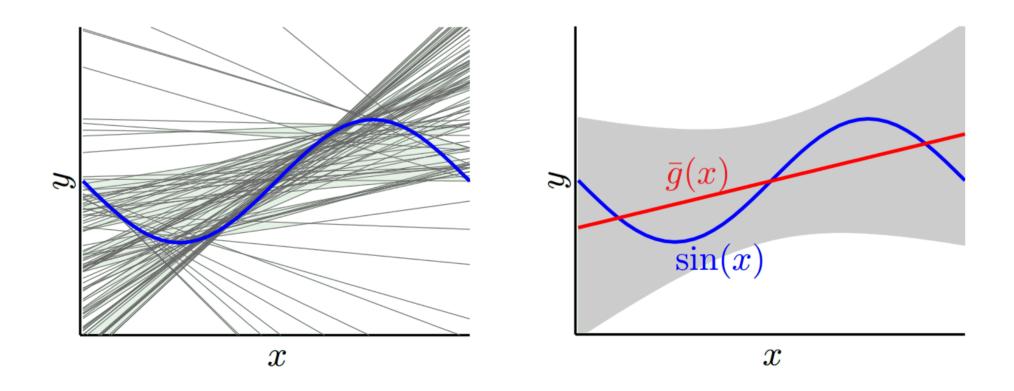
Constant: $H_0(x) = b$

We use with many different training sets (i.e. we repeatedly select 2 data points and perform the learning on them), we obtain (left graph represents all the learnt models, right graph represent their mean g and their variance (grey area)):



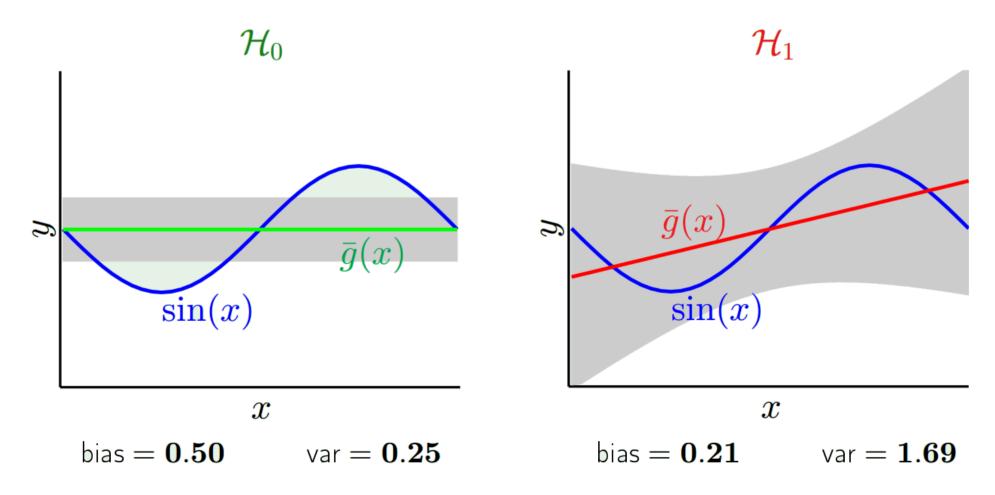
Linear: $H_1(x) = ax + b$

And we do the same for the linear model as well:



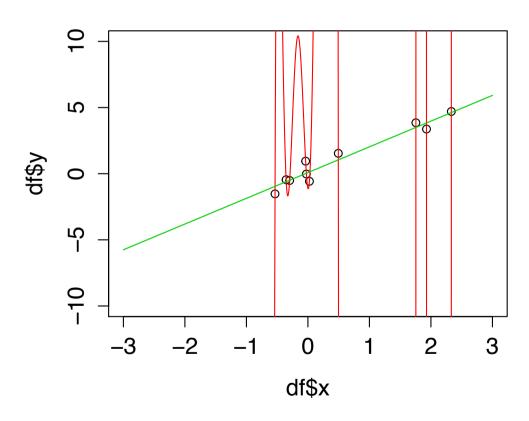
Compare

 H_0 yields simpler models than H_1 , hence a lower variance when we consider all the models learnt with H_0 , but the best model g (in red on the graph) learnt with H_1 is better than the best model learnt g with H_0 , hence a lower bias with H_1 :



Red: 9th order polynomial Green: linear regression of x on y

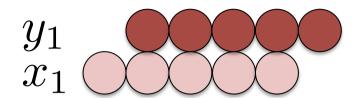
Which model is better?



Rolling window analysis

Rolling Window Analysis

- For predictive analysis, using multiple regression, there are two factors one must consider
- Which factors to include in a model
- How much data one should include in the model



$$y_1 \\ x_1 \\ y = \beta x + \epsilon \text{ learning } \beta$$

$$y_1 \\ x_1$$

$$y = \beta x + \epsilon$$
 learning β

 y_1

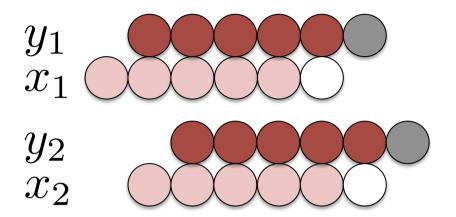
$$y=eta x+\epsilon$$
 prediction \hat{y}

$$y_1 \xrightarrow{x_1} = \hat{y}_1$$

$$= \hat{y}_1 \quad error_1 = \hat{y}_1 - y_1$$

$$y=\beta x+\epsilon$$
 learning β

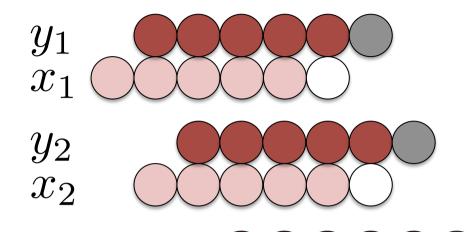
$$y=\beta x+\epsilon$$
 prediction \hat{y}



$$error_1 = \hat{y}_1 - y_1$$

$$error_2 = \hat{y}_2 - y_2$$

time



 y_3

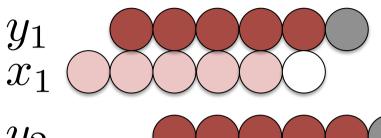
 x_3

$$error_1 = \hat{y}_1 - y_1$$

$$error_2 = \hat{y}_2 - y_2$$

$$error_3 = \hat{y}_3 - y_3$$

time



$$error_1 = \hat{y}_1 - y_1$$

$$error_2 = \hat{y}_2 - y_2$$

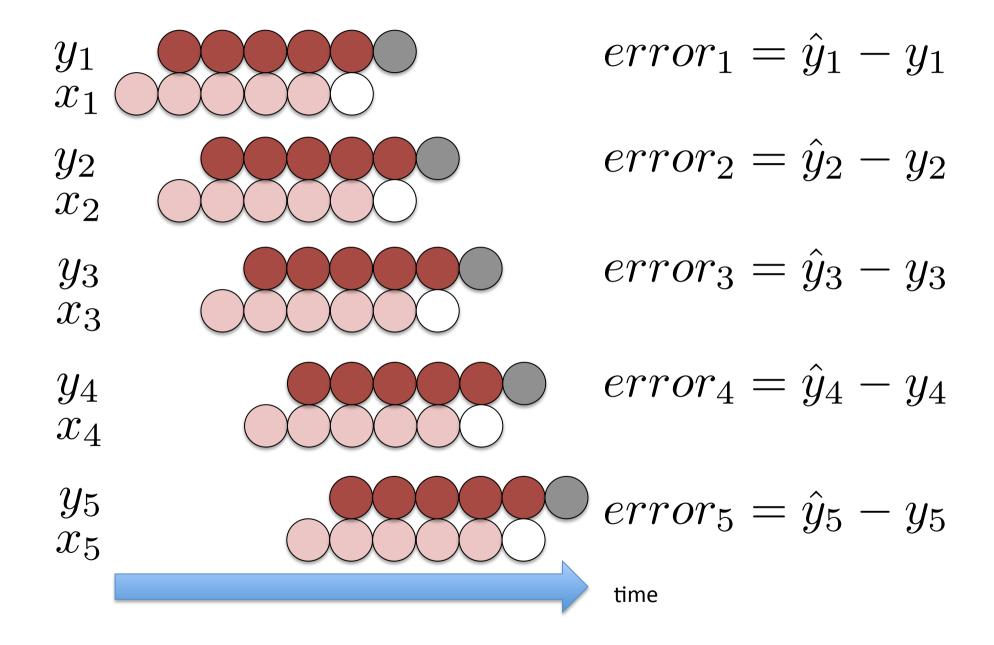
$$y_3$$
 x_3

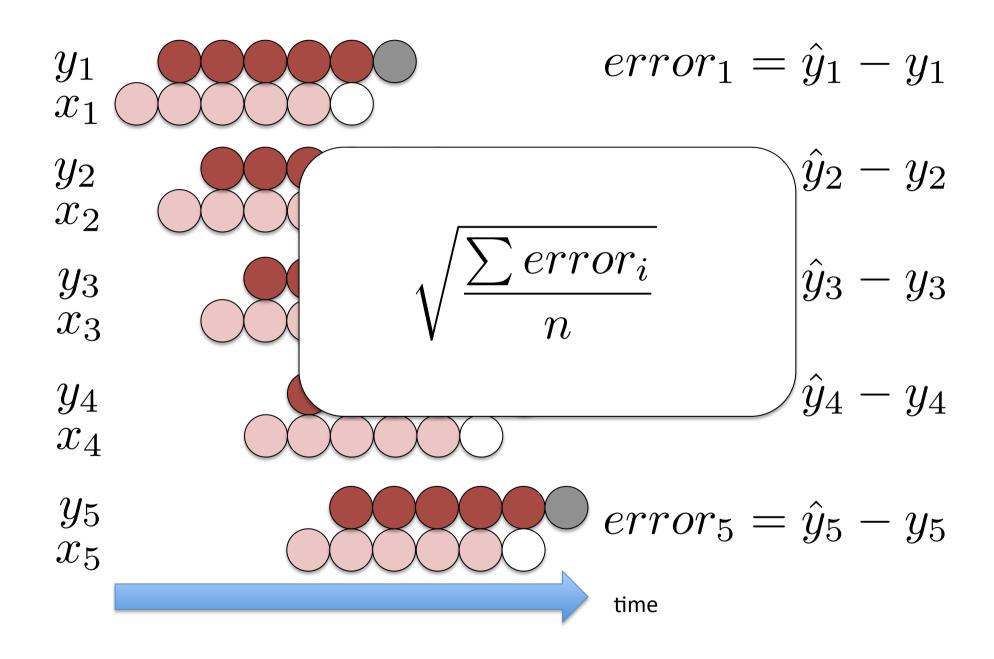
$$error_3 = \hat{y}_3 - y_3$$

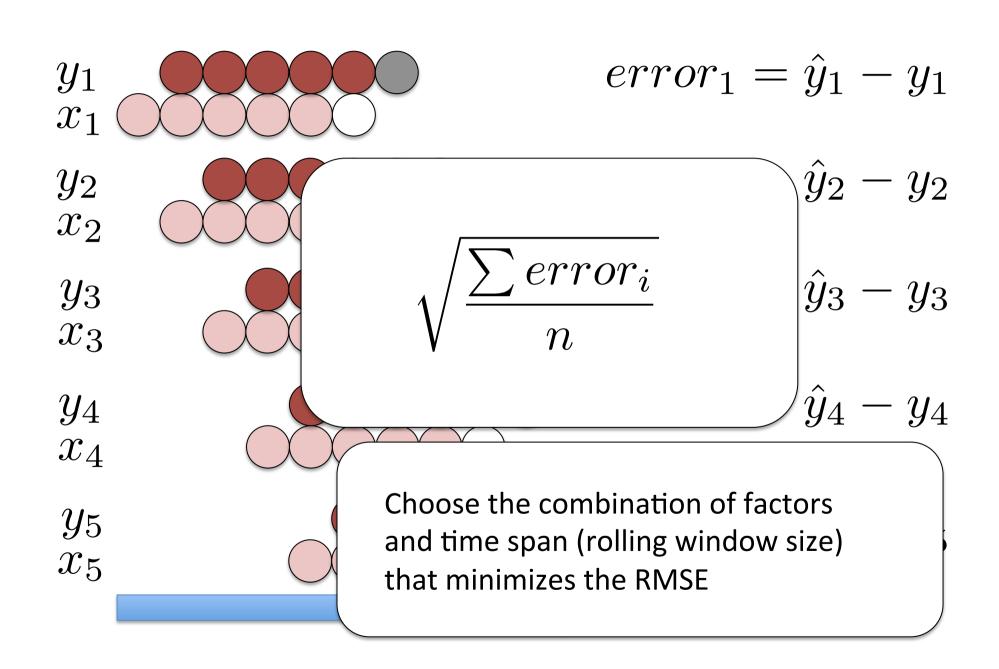
$$y_4 \\ x_4$$

$$error_4 = \hat{y}_4 - y_4$$

time







Tasks & Notes

- Work on HW5, make sure you get a chance to discuss your approach with Joe or Ken during the session today
- Joe & Ken (last) OH: Monday 4:30 5:30pm
- Prof. C-R OH: Monday 3:30-4:30pm