dplyr
library(dplyr)
A little bit of text parsing with stringr
Working with NC bike crash data released by https://opendurham.nc.gov
From https://opendurham.nc.gov
bike <- read.csv("https://stat.duke.edu/~mc301/data/nc_bike_crash.csv",
sep = ";", stringsAsFactors = FALSE) %>%
tbl_df()
View the names of variables via
names(bike)
## [1] "FID" "OBJECTID" "AmbulanceR" "BikeAge_Gr" "Bike_Age"
## [6] "Bike_Alc_D" "Bike_Dir" "Bike_Injur" "Bike_Pos" "Bike_Race"
## [11] "Bike_Sex" "City" "County" "CrashAlcoh" "CrashDay"
## [16] "Crash_Date" "Crash_Grp" "Crash_Hour" "Crash_Loc" "Crash_Mont"
## [21] "Crash_Time" "Crash_Type" "Crash_Ty_1" "Crash_Year" "Crsh_Sevri"
## [26] "Developmen" "DrvrAge_Gr" "Drvr_Age" "Drvr_Alc_D" "Drvr_EstSp"
## [31] "Drvr_Injur" "Drvr_Race" "Drvr_Sex" "Drvr_VehTy" "ExcsSpdInd"
## [36] "Hit_Run" "Light_Cond" "Locality" "Num_Lanes" "Num_Units"
## [41] "Rd_Charact" "Rd_Class" "Rd_Conditi" "Rd_Config" "Rd_Defects"
## [46] "Rd_Feature" "Rd_Surface" "Region" "Rural_Urba" "Speed_Limi"
## [51] "Traff_Cntr" "Weather" "Workzone_I" "Location"
and see detailed descriptions at https://stat.duke.edu/~mc301/data/nc_bike_crash.html.
stringsAsFactors = FALSE
when loading a data drameIn the Environment, click on the name of the data frame to view it in the data viewer
Use the str()
function to compactly display the internal structure of an R object
str(bike)
## Classes 'tbl_df', 'tbl' and 'data.frame': 5716 obs. of 54 variables:
## $ FID : int 18 29 33 35 49 53 56 60 63 66 ...
## $ OBJECTID : int 19 30 34 36 50 54 57 61 64 67 ...
## $ AmbulanceR: chr "No" "Yes" "No" "Yes" ...
## $ BikeAge_Gr: chr "" "50-59" "" "16-19" ...
## $ Bike_Age : int 6 51 10 17 6 52 18 40 6 7 ...
## $ Bike_Alc_D: chr "No" "No" "No" "No" ...
## $ Bike_Dir : chr "Not Applicable" "With Traffic" "With Traffic" "" ...
## $ Bike_Injur: chr "C: Possible Injury" "C: Possible Injury" "Injury" "B: Evident Injury" ...
## $ Bike_Pos : chr "Driveway / Alley" "Travel Lane" "Travel Lane" "Travel Lane" ...
## $ Bike_Race : chr "Black" "Black" "Black" "White" ...
## $ Bike_Sex : chr "Female" "Male" "Male" "Male" ...
## $ City : chr "Durham" "Greenville" "Farmville" "Charlotte" ...
## $ County : chr "Durham" "Pitt" "Pitt" "Mecklenburg" ...
## $ CrashAlcoh: chr "No" "No" "No" "No" ...
## $ CrashDay : chr "01-01-06" "01-01-02" "01-01-07" "01-01-05" ...
## $ Crash_Date: chr "2007-01-06" "2007-01-09" "2007-01-14" "2007-01-12" ...
## $ Crash_Grp : chr "Bicyclist Failed to Yield - Midblock" "Crossing Paths - Other Circumstances" "Bicyclist Failed to Yield - Sign-Controlled Intersection" "Loss of Control / Turning Error" ...
## $ Crash_Hour: int 13 23 16 19 12 20 19 14 16 0 ...
## $ Crash_Loc : chr "Non-Intersection" "Intersection-Related" "Intersection" "Intersection" ...
## $ Crash_Mont: chr "" "" "" "" ...
## $ Crash_Time: chr "0001-01-01T08:21:58-04:56" "0001-01-01T18:12:58-04:56" "0001-01-01T11:48:58-04:56" "0001-01-01T14:59:58-04:56" ...
## $ Crash_Type: chr "Bicyclist Ride Out - Residential Driveway" "Crossing Paths - Intersection - Other /" "Bicyclist Ride Through - Sign-Controlled Intersection" "Motorist Lost Control - Other /" ...
## $ Crash_Ty_1: int 353311 211180 111144 119139 112114 311231 119144 132180 112142 460910 ...
## $ Crash_Year: int 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...
## $ Crsh_Sevri: chr "C: Possible Injury" "C: Possible Injury" "O: No Injury" "B: Evident Injury" ...
## $ Developmen: chr "Residential" "Commercial" "Residential" "Residential" ...
## $ DrvrAge_Gr: chr "60-69" "30-39" "50-59" "30-39" ...
## $ Drvr_Age : int 66 34 52 33 NA 20 40 NA 17 51 ...
## $ Drvr_Alc_D: chr "No" "No" "No" "No" ...
## $ Drvr_EstSp: chr "11-15 mph" "0-5 mph" "21-25 mph" "46-50 mph" ...
## $ Drvr_Injur: chr "O: No Injury" "O: No Injury" "O: No Injury" "O: No Injury" ...
## $ Drvr_Race : chr "Black" "Black" "White" "White" ...
## $ Drvr_Sex : chr "Male" "Male" "Female" "Female" ...
## $ Drvr_VehTy: chr "Pickup" "Passenger Car" "Passenger Car" "Sport Utility" ...
## $ ExcsSpdInd: chr "No" "No" "No" "No" ...
## $ Hit_Run : chr "No" "No" "No" "No" ...
## $ Light_Cond: chr "Daylight" "Dark - Lighted Roadway" "Daylight" "Dark - Roadway Not Lighted" ...
## $ Locality : chr "Mixed (30% To 70% Developed)" "Urban (>70% Developed)" "Mixed (30% To 70% Developed)" "Urban (>70% Developed)" ...
## $ Num_Lanes : chr "2 lanes" "5 lanes" "2 lanes" "4 lanes" ...
## $ Num_Units : int 2 2 2 3 2 2 2 2 2 2 ...
## $ Rd_Charact: chr "Straight - Level" "Straight - Level" "Straight - Level" "Straight - Level" ...
## $ Rd_Class : chr "Local Street" "Local Street" "Local Street" "NC Route" ...
## $ Rd_Conditi: chr "Dry" "Dry" "Dry" "Dry" ...
## $ Rd_Config : chr "Two-Way, Not Divided" "Two-Way, Divided, Unprotected Median" "Two-Way, Not Divided" "Two-Way, Divided, Unprotected Median" ...
## $ Rd_Defects: chr "None" "None" "None" "None" ...
## $ Rd_Feature: chr "No Special Feature" "Four-Way Intersection" "Four-Way Intersection" "Four-Way Intersection" ...
## $ Rd_Surface: chr "Smooth Asphalt" "Smooth Asphalt" "Smooth Asphalt" "Smooth Asphalt" ...
## $ Region : chr "Piedmont" "Coastal" "Coastal" "Piedmont" ...
## $ Rural_Urba: chr "Urban" "Urban" "Rural" "Urban" ...
## $ Speed_Limi: chr "20 - 25 MPH" "40 - 45 MPH" "30 - 35 MPH" "40 - 45 MPH" ...
## $ Traff_Cntr: chr "No Control Present" "Stop And Go Signal" "Stop Sign" "Stop And Go Signal" ...
## $ Weather : chr "Clear" "Clear" "Clear" "Cloudy" ...
## $ Workzone_I: chr "No" "No" "No" "No" ...
## $ Location : chr "36.002743, -78.8785" "35.612984, -77.39265" "35.595676, -77.59074" "35.076767, -80.7728" ...
dplyr
The dplyr
package is based on the concepts of functions as verbs that manipulate data frames:
filter()
: pick rows matching criteriaselect()
: pick columns by namerename()
: rename specific columnsarrange()
: reorder rowsmutate()
: add new variablestransmute()
: create new data frame with variablessample_n()
/ sample_frac()
: randomly sample rowssummarise()
: reduce variables to valuesdplyr
rulesfilter()
filter()
for crashes in Durham County
bike %>%
filter(County == "Durham")
## Source: local data frame [253 x 54]
##
## FID OBJECTID AmbulanceR BikeAge_Gr Bike_Age Bike_Alc_D Bike_Dir
## 1 18 19 No 6 No Not Applicable
## 2 53 54 Yes 50-59 52 No With Traffic
## 3 56 57 Yes 16-19 18 No
## 4 209 210 No 16-19 16 No Facing Traffic
## 5 228 229 Yes 40-49 40 No With Traffic
## 6 620 621 Yes 50-59 55 No With Traffic
## 7 667 668 Yes 60-69 61 No Not Applicable
## 8 458 459 Yes 60-69 62 No With Traffic
## 9 576 577 No 40-49 49 No With Traffic
## 10 618 619 No 20-24 23 No With Traffic
## .. ... ... ... ... ... ... ...
## Variables not shown: Bike_Injur (chr), Bike_Pos (chr), Bike_Race (chr),
## Bike_Sex (chr), City (chr), County (chr), CrashAlcoh (chr), CrashDay
## (chr), Crash_Date (chr), Crash_Grp (chr), Crash_Hour (int), Crash_Loc
## (chr), Crash_Mont (chr), Crash_Time (chr), Crash_Type (chr), Crash_Ty_1
## (int), Crash_Year (int), Crsh_Sevri (chr), Developmen (chr), DrvrAge_Gr
## (chr), Drvr_Age (int), Drvr_Alc_D (chr), Drvr_EstSp (chr), Drvr_Injur
## (chr), Drvr_Race (chr), Drvr_Sex (chr), Drvr_VehTy (chr), ExcsSpdInd
## (chr), Hit_Run (chr), Light_Cond (chr), Locality (chr), Num_Lanes (chr),
## Num_Units (int), Rd_Charact (chr), Rd_Class (chr), Rd_Conditi (chr),
## Rd_Config (chr), Rd_Defects (chr), Rd_Feature (chr), Rd_Surface (chr),
## Region (chr), Rural_Urba (chr), Speed_Limi (chr), Traff_Cntr (chr),
## Weather (chr), Workzone_I (chr), Location (chr)
filter()
for crashes in Durham County where biker was < 10 yrs old
bike %>%
filter(County == "Durham", Bike_Age < 10)
## Source: local data frame [20 x 54]
##
## FID OBJECTID AmbulanceR BikeAge_Gr Bike_Age Bike_Alc_D Bike_Dir
## 1 18 19 No 6 No Not Applicable
## 2 47 48 No 10-Jun 9 No Not Applicable
## 3 124 125 Yes 10-Jun 8 No With Traffic
## 4 531 532 Yes 10-Jun 7 No With Traffic
## 5 704 705 Yes 10-Jun 9 No Not Applicable
## 6 42 43 No 10-Jun 8 No With Traffic
## 7 392 393 Yes 0-5 2 No Not Applicable
## 8 941 942 No 10-Jun 9 No With Traffic
## 9 436 437 Yes 10-Jun 6 No Not Applicable
## 10 160 161 Yes 10-Jun 7 No With Traffic
## 11 273 274 Yes 10-Jun 7 No Facing Traffic
## 12 78 79 Yes 10-Jun 7 No With Traffic
## 13 422 423 No 10-Jun 9 No Not Applicable
## 14 570 571 No 0 Missing Not Applicable
## 15 683 684 Yes 10-Jun 8 No Not Applicable
## 16 62 63 Yes 10-Jun 7 No With Traffic
## 17 248 249 No 0-5 4 No Not Applicable
## 18 306 307 Yes 10-Jun 8 No With Traffic
## 19 231 232 Yes 10-Jun 8 No With Traffic
## 20 361 362 Yes 10-Jun 9 No With Traffic
## Variables not shown: Bike_Injur (chr), Bike_Pos (chr), Bike_Race (chr),
## Bike_Sex (chr), City (chr), County (chr), CrashAlcoh (chr), CrashDay
## (chr), Crash_Date (chr), Crash_Grp (chr), Crash_Hour (int), Crash_Loc
## (chr), Crash_Mont (chr), Crash_Time (chr), Crash_Type (chr), Crash_Ty_1
## (int), Crash_Year (int), Crsh_Sevri (chr), Developmen (chr), DrvrAge_Gr
## (chr), Drvr_Age (int), Drvr_Alc_D (chr), Drvr_EstSp (chr), Drvr_Injur
## (chr), Drvr_Race (chr), Drvr_Sex (chr), Drvr_VehTy (chr), ExcsSpdInd
## (chr), Hit_Run (chr), Light_Cond (chr), Locality (chr), Num_Lanes (chr),
## Num_Units (int), Rd_Charact (chr), Rd_Class (chr), Rd_Conditi (chr),
## Rd_Config (chr), Rd_Defects (chr), Rd_Feature (chr), Rd_Surface (chr),
## Region (chr), Rural_Urba (chr), Speed_Limi (chr), Traff_Cntr (chr),
## Weather (chr), Workzone_I (chr), Location (chr)
operator | definition |
---|---|
< |
less than |
<= |
less than or equal to |
> |
greater than |
>= |
greater than or equal to |
== |
exactly equal to |
!= |
not equal to |
x | y |
x OR y |
x & y |
x AND y |
operator | definition |
---|---|
is.na(x) |
test if x is NA |
!is.na(x) |
test if x is not NA |
x %in% y |
test if x is in y |
!(x %in% y) |
test if x is not in y |
!x |
not x |
BikeAge_gr
of 10-Jun
or 15-Nov
mean?
bike %>%
group_by(BikeAge_Gr) %>%
summarise(crash_count = n())
## Source: local data frame [13 x 2]
##
## BikeAge_Gr crash_count
## 1 112
## 2 0-5 60
## 3 10-Jun 421
## 4 15-Nov 747
## 5 16-19 605
## 6 20-24 680
## 7 25-29 430
## 8 30-39 658
## 9 40-49 920
## 10 50-59 739
## 11 60-69 274
## 12 70 12
## 13 70+ 58
10-Jun
should be 6-10
15-Nov
should be 11-15
stringr
stringr
install.packages(stringr) # only have to do this once
library(stringr)
str_replace()
and add new variables with mutate()
BikeAge_Gr
variable
10-Jun
should be 6-10
15-Nov
should be 11-15
bike <- bike %>%
mutate(BikeAge_Gr = str_replace(BikeAge_Gr, "10-Jun", "6-10")) %>%
mutate(BikeAge_Gr = str_replace(BikeAge_Gr, "15-Nov", "11-15"))
Always check your changes and confirm code did what you wanted it to do
bike %>%
group_by(BikeAge_Gr) %>%
summarise(count = n())
## Source: local data frame [13 x 2]
##
## BikeAge_Gr count
## 1 112
## 2 0-5 60
## 3 11-15 747
## 4 16-19 605
## 5 20-24 680
## 6 25-29 430
## 7 30-39 658
## 8 40-49 920
## 9 50-59 739
## 10 6-10 421
## 11 60-69 274
## 12 70 12
## 13 70+ 58
slice()
for certain row numbersFirst five
bike %>%
slice(1:5)
## Source: local data frame [5 x 54]
##
## FID OBJECTID AmbulanceR BikeAge_Gr Bike_Age Bike_Alc_D Bike_Dir
## 1 18 19 No 6 No Not Applicable
## 2 29 30 Yes 50-59 51 No With Traffic
## 3 33 34 No 10 No With Traffic
## 4 35 36 Yes 16-19 17 No
## 5 49 50 No 6 No Facing Traffic
## Variables not shown: Bike_Injur (chr), Bike_Pos (chr), Bike_Race (chr),
## Bike_Sex (chr), City (chr), County (chr), CrashAlcoh (chr), CrashDay
## (chr), Crash_Date (chr), Crash_Grp (chr), Crash_Hour (int), Crash_Loc
## (chr), Crash_Mont (chr), Crash_Time (chr), Crash_Type (chr), Crash_Ty_1
## (int), Crash_Year (int), Crsh_Sevri (chr), Developmen (chr), DrvrAge_Gr
## (chr), Drvr_Age (int), Drvr_Alc_D (chr), Drvr_EstSp (chr), Drvr_Injur
## (chr), Drvr_Race (chr), Drvr_Sex (chr), Drvr_VehTy (chr), ExcsSpdInd
## (chr), Hit_Run (chr), Light_Cond (chr), Locality (chr), Num_Lanes (chr),
## Num_Units (int), Rd_Charact (chr), Rd_Class (chr), Rd_Conditi (chr),
## Rd_Config (chr), Rd_Defects (chr), Rd_Feature (chr), Rd_Surface (chr),
## Region (chr), Rural_Urba (chr), Speed_Limi (chr), Traff_Cntr (chr),
## Weather (chr), Workzone_I (chr), Location (chr)
slice()
for certain row numbersLast five
last_row <- nrow(bike)
bike %>%
slice((last_row-4):last_row)
## Source: local data frame [5 x 54]
##
## FID OBJECTID AmbulanceR BikeAge_Gr Bike_Age Bike_Alc_D Bike_Dir
## 1 460 461 Yes 6-10 7 No Not Applicable
## 2 474 475 Yes 50-59 50 No With Traffic
## 3 479 480 Yes 16-19 16 No Not Applicable
## 4 487 488 No 40-49 47 Yes With Traffic
## 5 488 489 Yes 30-39 35 No Facing Traffic
## Variables not shown: Bike_Injur (chr), Bike_Pos (chr), Bike_Race (chr),
## Bike_Sex (chr), City (chr), County (chr), CrashAlcoh (chr), CrashDay
## (chr), Crash_Date (chr), Crash_Grp (chr), Crash_Hour (int), Crash_Loc
## (chr), Crash_Mont (chr), Crash_Time (chr), Crash_Type (chr), Crash_Ty_1
## (int), Crash_Year (int), Crsh_Sevri (chr), Developmen (chr), DrvrAge_Gr
## (chr), Drvr_Age (int), Drvr_Alc_D (chr), Drvr_EstSp (chr), Drvr_Injur
## (chr), Drvr_Race (chr), Drvr_Sex (chr), Drvr_VehTy (chr), ExcsSpdInd
## (chr), Hit_Run (chr), Light_Cond (chr), Locality (chr), Num_Lanes (chr),
## Num_Units (int), Rd_Charact (chr), Rd_Class (chr), Rd_Conditi (chr),
## Rd_Config (chr), Rd_Defects (chr), Rd_Feature (chr), Rd_Surface (chr),
## Region (chr), Rural_Urba (chr), Speed_Limi (chr), Traff_Cntr (chr),
## Weather (chr), Workzone_I (chr), Location (chr)
select()
to keep only the variables you mentionbike %>%
select(Crash_Loc, Hit_Run) %>%
table()
## Hit_Run
## Crash_Loc No Yes
## . 4 0
## Intersection 2223 275
## Intersection-Related 252 42
## Location 3 7
## Non-Intersection 2213 462
## Non-Roadway 205 30
select()
to exclude variablesbike %>%
select(-OBJECTID)
## Source: local data frame [5,716 x 53]
##
## FID AmbulanceR BikeAge_Gr Bike_Age Bike_Alc_D Bike_Dir
## 1 18 No 6 No Not Applicable
## 2 29 Yes 50-59 51 No With Traffic
## 3 33 No 10 No With Traffic
## 4 35 Yes 16-19 17 No
## 5 49 No 6 No Facing Traffic
## 6 53 Yes 50-59 52 No With Traffic
## 7 56 Yes 16-19 18 No
## 8 60 No 40-49 40 No Facing Traffic
## 9 63 Yes 6-10 6 No Facing Traffic
## 10 66 Yes 6-10 7 No
## .. ... ... ... ... ... ...
## Variables not shown: Bike_Injur (chr), Bike_Pos (chr), Bike_Race (chr),
## Bike_Sex (chr), City (chr), County (chr), CrashAlcoh (chr), CrashDay
## (chr), Crash_Date (chr), Crash_Grp (chr), Crash_Hour (int), Crash_Loc
## (chr), Crash_Mont (chr), Crash_Time (chr), Crash_Type (chr), Crash_Ty_1
## (int), Crash_Year (int), Crsh_Sevri (chr), Developmen (chr), DrvrAge_Gr
## (chr), Drvr_Age (int), Drvr_Alc_D (chr), Drvr_EstSp (chr), Drvr_Injur
## (chr), Drvr_Race (chr), Drvr_Sex (chr), Drvr_VehTy (chr), ExcsSpdInd
## (chr), Hit_Run (chr), Light_Cond (chr), Locality (chr), Num_Lanes (chr),
## Num_Units (int), Rd_Charact (chr), Rd_Class (chr), Rd_Conditi (chr),
## Rd_Config (chr), Rd_Defects (chr), Rd_Feature (chr), Rd_Surface (chr),
## Region (chr), Rural_Urba (chr), Speed_Limi (chr), Traff_Cntr (chr),
## Weather (chr), Workzone_I (chr), Location (chr)
rename()
specific columnsUseful for correcting typos, and renaming to make variable names shorter and/or more informative
names(bike)
## [1] "FID" "OBJECTID" "AmbulanceR" "BikeAge_Gr" "Bike_Age"
## [6] "Bike_Alc_D" "Bike_Dir" "Bike_Injur" "Bike_Pos" "Bike_Race"
## [11] "Bike_Sex" "City" "County" "CrashAlcoh" "CrashDay"
## [16] "Crash_Date" "Crash_Grp" "Crash_Hour" "Crash_Loc" "Crash_Mont"
## [21] "Crash_Time" "Crash_Type" "Crash_Ty_1" "Crash_Year" "Crsh_Sevri"
## [26] "Developmen" "DrvrAge_Gr" "Drvr_Age" "Drvr_Alc_D" "Drvr_EstSp"
## [31] "Drvr_Injur" "Drvr_Race" "Drvr_Sex" "Drvr_VehTy" "ExcsSpdInd"
## [36] "Hit_Run" "Light_Cond" "Locality" "Num_Lanes" "Num_Units"
## [41] "Rd_Charact" "Rd_Class" "Rd_Conditi" "Rd_Config" "Rd_Defects"
## [46] "Rd_Feature" "Rd_Surface" "Region" "Rural_Urba" "Speed_Limi"
## [51] "Traff_Cntr" "Weather" "Workzone_I" "Location"
Speed_Limi
to Speed_Limit
:bike <- bike %>%
rename(Speed_Limit = Speed_Limi)
Always check your changes and confirm code did what you wanted it to do
names(bike)
## [1] "FID" "OBJECTID" "AmbulanceR" "BikeAge_Gr" "Bike_Age"
## [6] "Bike_Alc_D" "Bike_Dir" "Bike_Injur" "Bike_Pos" "Bike_Race"
## [11] "Bike_Sex" "City" "County" "CrashAlcoh" "CrashDay"
## [16] "Crash_Date" "Crash_Grp" "Crash_Hour" "Crash_Loc" "Crash_Mont"
## [21] "Crash_Time" "Crash_Type" "Crash_Ty_1" "Crash_Year" "Crsh_Sevri"
## [26] "Developmen" "DrvrAge_Gr" "Drvr_Age" "Drvr_Alc_D" "Drvr_EstSp"
## [31] "Drvr_Injur" "Drvr_Race" "Drvr_Sex" "Drvr_VehTy" "ExcsSpdInd"
## [36] "Hit_Run" "Light_Cond" "Locality" "Num_Lanes" "Num_Units"
## [41] "Rd_Charact" "Rd_Class" "Rd_Conditi" "Rd_Config" "Rd_Defects"
## [46] "Rd_Feature" "Rd_Surface" "Region" "Rural_Urba" "Speed_Limit"
## [51] "Traff_Cntr" "Weather" "Workzone_I" "Location"
summarise()
in a new data framebike %>%
group_by(BikeAge_Gr) %>%
summarise(crash_count = n()) %>%
arrange(crash_count)
## Source: local data frame [13 x 2]
##
## BikeAge_Gr crash_count
## 1 70 12
## 2 70+ 58
## 3 0-5 60
## 4 112
## 5 60-69 274
## 6 6-10 421
## 7 25-29 430
## 8 16-19 605
## 9 30-39 658
## 10 20-24 680
## 11 50-59 739
## 12 11-15 747
## 13 40-49 920
arrange()
to order rowsbike %>%
group_by(BikeAge_Gr) %>%
summarise(crash_count = n()) %>%
arrange(desc(crash_count))
## Source: local data frame [13 x 2]
##
## BikeAge_Gr crash_count
## 1 40-49 920
## 2 11-15 747
## 3 50-59 739
## 4 20-24 680
## 5 30-39 658
## 6 16-19 605
## 7 25-29 430
## 8 6-10 421
## 9 60-69 274
## 10 112
## 11 0-5 60
## 12 70+ 58
## 13 70 12
sample_n()
or sample_frac()
sample_n()
: randomly sample 5 observationsbike_n5 <- bike %>%
sample_n(5, replace = FALSE)
dim(bike_n5)
## [1] 5 54
sample_frac()
: randomly sample 20% of observationsbike_perc20 <-bike %>%
sample_frac(0.2, replace = FALSE)
dim(bike_perc20)
## [1] 1143 54