Chapter 9: Hypothesis Testing

Sections

- 9.1 Problems of Testing Hypotheses
- 9.2 Testing Simple Hypotheses
- 9.3 Uniformly Most Powerful Tests
- Skip: 9.4 Two-Sided Alternatives
- 9.5 The t Test
- 9.6 Comparing the Means of Two Normal Distributions
- 9.7 The F Distributions
- 9.8 Bayes Test Procedures
- 9.9 Foundational Issues
Uniformly Most Powerful (UMP) Tests

A test \(\delta^* \) is a **uniformly most powerful test** at level \(\alpha_0 \) if for any other level \(\alpha_0 \) test \(\delta \)

\[
\pi(\theta|\delta) \leq \pi(\theta|\delta^*) \quad \text{for all } \theta \in \Omega_1
\]

I.o.w: It has the lowest probability of type II error of any test, uniformly for all \(\theta \in \Omega_1 \).

- First control the probability of type I error by setting the level (size) of the test low, then control the probability of type II error.
- If \(\pi(\theta|\delta^*) \) is high for all \(\theta \in \Omega_1 \), the test is often called “powerful”
Example 1: Simple hypotheses.
 - $H_0 : \theta = \theta_0$ vs. $H_1 : \theta = \theta_1$
 - LRT is UMP by Neyman-Pearson lemma (Theorem 9.2.2)

Example 2: One-sided hypotheses:
 - $H_0 : \theta \leq \theta_0$ vs. $H_1 : \theta > \theta_0$
 - In a large class of problems (the distribution has a “monotone likelihood ratio”), we can show that “reject H_0 if $T \geq t$” is a UMP for some T (Ch 9.3)

Example 3: Two-sided hypotheses:
 - $H_0 : \theta = \theta_0$ vs. $H_1 : \theta \neq \theta_0$
 - UMP tests do not exist (Page 565)
Chapter 9: Hypothesis Testing

Sections

- 9.1 Problems of Testing Hypotheses
- Skip: 9.2 Testing Simple Hypotheses
- 9.3 Uniformly Most Powerful Tests
- Skip: 9.4 Two-Sided Alternatives
- 9.5 The t Test
- 9.6 Comparing the Means of Two Normal Distributions
- 9.7 The F Distributions
- 9.8 Bayes Test Procedures
- 9.9 Foundational Issues
The t-Test

- The t-Test is a test for hypotheses concerning the mean parameter in the normal distribution when the variance is also unknown.
- The test is based on the t distribution

The setup for the next few slides:
- Let X_1, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$ and consider the hypotheses

$$H_0 : \mu \leq \mu_0 \quad \text{vs.} \quad H_1 : \mu > \mu_0$$

(1)

The parameter space here is $-\infty < \mu < \infty$ and $\sigma^2 > 0$, i.e.

$$\Omega = (-\infty, \infty) \times (0, \infty)$$

And

$$\Omega_0 = (-\infty, \mu_0] \times (0, \infty) \quad \text{and} \quad \Omega_1 = (\mu_0, \infty) \times (0, \infty)$$
The one-sided t-Test

- The t test: a likelihood ratio test (see p. 583 - 585 in the book)
- Let
 \[U = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{\sigma'} \quad \text{where} \quad \sigma' = \left(\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \right)^{1/2} \]
- If $\mu = \mu_0$ then U has the t_{n-1} distribution
- Tests based on U are called t tests
The one-sided t-Test

- Let T_{m}^{-1} be the quantile function of the t_{m} distribution.
- The test δ that rejects H_{0} in (1) if $U \geq T_{n-1}^{-1}(1 - \alpha_{0})$ has size α_{0} (Theorem 9.5.1).
- To calculate the p-value:

Theorem 9.5.2: p-values for t Tests

Let u be the observed value of U.

The p-value for the hypothesis in (1) is $1 - T_{n-1}(u)$.
Example: Acid Concentration in Cheese (Example 8.5.4)

- Have a random sample of $n = 10$ lactic acid measurements from cheese, assumed to be from a normal distribution with unknown mean and variance.
- Observed: $\bar{x}_n = 1.379$ and $\sigma' = 0.3277$
- Perform the level $\alpha_0 = 0.05$ t-test of the hypotheses

$$H_0 : \mu \leq 1.2 \quad \text{vs} \quad H_1 : \mu > 1.2$$

- Compute the p-value
The complete power function

- Need the power function to decide the sample size n
- The power function $\pi(\mu, \sigma^2|\delta)$ is a non-central t_m distributions

Def: Non-central t_m distributions

Let $W \sim N(\psi, 1)$ and $Y \sim \chi^2_m$ be independent. The distribution of

$$X = \frac{W}{(Y/m)^{1/2}}$$

is called the *non-central t distribution with m degrees of freedom and non-centrality parameter ψ*
Non-central t_m distribution
The complete power function
For the one-sided t-test

Theorem 9.5.3

U has the non-central t_{n-1} distribution with non-centrality parameter

$$\psi = \sqrt{n}(\mu - \mu_0)/\sigma.$$

The power function of the t-test that rejects H_0 in (1) if

$U \geq T_{n-1}^{-1}(1 - \alpha_0) = c_1$ is

$$\pi(\mu, \sigma^2|\delta) = 1 - T_{n-1}(c_1|\psi)$$
Power function for the one-sided t-test

Example: $n = 10, \mu_0 = 5, \alpha_0 = 0.05$

Note that the power function is a function of both σ^2 and μ
The other one-sided t-Test

- Now consider the hypothesis
 \[H_0 : \mu \geq \mu_0 \quad \text{vs.} \quad H_1 : \mu < \mu_0 \]
 (2)

- The test δ that rejects H_0 if $U \leq T_{n-1}^{-1}(\alpha_0)$ has size α_0 (Corollary 9.5.1)

Theorem 9.5.2: p-values for t Tests

Let u be the observed value of U. The p-value for the hypothesis in (2) is $T_{n-1}(u)$.

Theorem 9.5.3

U has the non-central t_{n-1} distribution with non-centrality parameter $\psi = \sqrt{n}(\mu - \mu_0)/\sigma$. The power function of the t-test that rejects H_0 in (2) if $U \leq T_{n-1}^{-1}(\alpha_0) = c_2$ is

\[\pi(\mu, \sigma^2|\delta) = T_{n-1}(c_2|\psi) \]
Two-sided t-test

Consider now the test with a two-sided alternative hypothesis:

$$H_0 : \mu = \mu_0 \quad \text{vs.} \quad H_1 : \mu \neq \mu_0$$ \hspace{1cm} (3)

- Size α_0 test δ: rejects H_0 iff $|U| \geq T_{n-1}^{-1}(1 - \alpha_0/2) = c$
- If u is the observed value of U then the p-value is $2(1 - T_{n-1}(|u|))$
- The power function is

$$\pi(\mu, \sigma^2 | \delta) = T_{n-1}(-c|\psi) + 1 - T_{n-1}(c|\psi)$$
Notes on one sample t tests

- Paired t tests are conducted in the same way.
- For large n, the distribution of the test statistic under H_0 is close to the standard normal, i.e., the corresponding test is close to a Z test.
The two-sample t-test

Comparing the means of two populations
- X_1, \ldots, X_m i.i.d. $N(\mu_1, \sigma^2)$ and Y_1, \ldots, Y_n i.i.d. $N(\mu_2, \sigma^2)$
- The variance is the same for both samples, but unknown

We are interested in testing one of these hypotheses:

a) $H_0 : \mu_1 \leq \mu_2$ vs. $H_1 : \mu_1 > \mu_2$

b) $H_0 : \mu_1 \geq \mu_2$ vs. $H_1 : \mu_1 < \mu_2$

c) $H_0 : \mu_1 = \mu_2$ vs. $H_1 : \mu_1 \neq \mu_2$
Two-sample t statistic

Let $\overline{X}_m = \frac{1}{m} \sum_{i=1}^{m} X_i$ and $\overline{Y}_n = \frac{1}{n} \sum_{i=1}^{n} Y_i$

$S^2_X = \sum_{i=1}^{m} (X_i - \overline{X}_m)^2$ and $S^2_Y = \sum_{i=1}^{n} (Y_i - \overline{Y}_n)^2$

$U = \frac{\sqrt{m + n - 2} (\overline{X}_m - \overline{Y}_n)}{\left(\frac{1}{m} + \frac{1}{n} \right)^{1/2} \left(S^2_X + S^2_Y \right)^{1/2}}$

- **Theorem 9.6.1**: If $\mu_1 = \mu_2$ then $U \sim t_{m+n-2}$
- **Theorem 9.6.4**: For any μ_1 and μ_2, U has the non-central t_{m+n-2} distribution with non-centrality parameter

$$\psi = \frac{\mu_1 - \mu_2}{\sigma \left(\frac{1}{m} + \frac{1}{n} \right)^{1/2}}$$
Two-sample t test – summary

Proofs similar to the regular t-test

a) $H_0 : \mu_1 \leq \mu_2$ vs. $H_1 : \mu_1 > \mu_2$
 - Level α_0 test: Reject H_0 iff $U \geq T_{m+n-2}^{-1}(1 - \alpha_0)$
 - p-value: $1 - T_{m+n-2}(u)$

b) $H_0 : \mu_1 \geq \mu_2$ vs. $H_1 : \mu_1 < \mu_2$
 - Level α_0 test: Reject H_0 iff $U \leq T_{m+n-2}^{-1}(\alpha_0)$
 - p-value: $T_{m+n-2}(u)$

c) $H_0 : \mu_1 = \mu_2$ vs. $H_1 : \mu_1 \neq \mu_2$
 - Level α_0 test: Reject H_0 iff $|U| \geq T_{m+n-2}^{-1}(1 - \alpha_0/2)$
 - p-value: $2(1 - T_{m+n-2}(|u|))$
Power function is now a function of 3 parameters: $\pi(\mu_1, \mu_2, \sigma^2 | \delta)$

The two-sample t-test is a likelihood ratio test (see p. 592)

Important difference: **Paired** t test vs. two sample t test

Two-sample t test with unequal variances

- Proposed test-statistics do not have known distribution, but approximations have been obtained
- Approach 1: The Welch statistic

$$V = \frac{\bar{X}_m - \bar{Y}_n}{\left(\frac{S^2_X}{m(m-1)} + \frac{S^2_Y}{n(n-1)} \right)^{1/2}}$$

- can be approximated by a t distribution
- Approach 2: The distribution of the likelihood ratio statistic can be approximated by the χ^2_1 distribution if the sample size is large enough
F-distributions

In light of the previous slide, it would be nice to have a test of whether the variances in the two normal populations are equal → need the $F_{m,n}$ distributions

Def: $F_{m,n}$-distributions

Let $Y \sim \chi^2_m$ and $W \sim \chi^2_n$ be independent. The distribution of

$$X = \frac{Y/m}{W/n} = \frac{nY}{mW}$$

is called the F distribution with m and n degrees of freedom

The pdf of the $F_{m,n}$ distribution is

$$f(x) = \frac{\Gamma \left(\frac{(m + n)/2}{2} \right) m^{m/2}n^{n/2}}{\Gamma(m/2)\Gamma(n/2)} \frac{x^{m/2-1}}{(mx + n)^{(m+n)/2}} \quad x > 0$$
F-distributions

The F-distributions are used in hypothesis testing, particularly in the context of analysis of variance (ANOVA), to compare variances from different populations. The graph shows different F distributions for various parameter values:

- Red line: $m = 10$, $n = 5$
- Green line: $m = 5$, $n = 10$
- Blue line: $m = 20$, $n = 20$

The x-axis represents the F statistic, and the y-axis represents the density of the F distribution.
Properties of the F-distributions

The 0.95 and 0.975 quantiles of the $F_{m,n}$ distribution is tabulated in the back of the book for a few combinations of m and n

Theorem 9.7.2: Two properties

(i) If $X \sim F_{m,n}$ then $1/X \sim F_{n,m}$

(ii) If $Y \sim t_n$ then $Y^2 \sim F_{1,n}$
Comparing the variances of two normals

Comparing the variances of two populations
- \(X_1, \ldots, X_m \) i.i.d. \(N(\mu_1, \sigma_1^2) \) and
 - \(Y_1, \ldots, Y_n \) i.i.d. \(N(\mu_2, \sigma_2^2) \) All four parameters unknown

Consider the hypotheses:

(I) \(H_0 : \sigma_1^2 \leq \sigma_2^2 \) vs. \(H_1 : \sigma_1^2 > \sigma_2^2 \)

and the test that rejects \(H_0 \) if \(V \geq c \), where

\[
V = \frac{S_X^2 / (m - 1)}{S_Y^2 / (n - 1)}
\]

This test is called an \textit{F-test}

- \(\frac{\sigma_2^2}{\sigma_1^2} V \sim F_{m-1, n-1} \)

- If \(\sigma_1^2 = \sigma_2^2 \) then \(V \sim F_{m-1, n-1} \)
The F test

Let $G_{m,n}(x)$ be the cdf of the $F_{m,n}$ distribution

Theorem 9.7.4

Let δ be the test that rejects H_0 in

$$H_0 : \sigma_1^2 \leq \sigma_2^2 \quad \text{vs.} \quad H_1 : \sigma_1^2 > \sigma_2^2$$

if $V \geq c = G_{m-1,n-1}^{-1}(1 - \alpha_0)$. Then δ is of size α_0 and

- $\pi(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2|\delta) = 1 - G_{m-1,n-1} \left(\frac{\sigma_2^2}{\sigma_1^2} c \right)$ and
- p-value $= 1 - G_{m-1,n-1}(\nu)$, where ν is the observed value of V
The F test – two sided alternative

Two sided alternative:

$$H_0 : \sigma_1^2 = \sigma_2^2 \quad \text{vs.} \quad H_1 : \sigma_1^2 \neq \sigma_2^2$$

Equal-tailed two-sided F test

Let δ be the F-test that rejects H_0 when

$$V \leq c_1 = G^{-1}_{m-1,n-1}(\alpha_0/2) \quad \text{or} \quad V \geq c_2 = G^{-1}_{m-1,n-1}(1 - \alpha_0/2).$$

Then δ is a level α_0 test and the p-value is

$$2 \times \min\{1 - G_{m-1,n-1}(v), G_{m-1,n-1}(v)\}.$$