Introduction to Classification & Regression Trees

ISLR Chapter 8

November 8, 2017
Classification and Regression Trees

Carseat data from ISLR package
Classification and Regression Trees

Carseat data from ISLR package

- Binary Outcome \(\text{High} = 1 \) if Sales > 8, otherwise 0
Classification and Regression Trees

Carseat data from ISLR package

- Binary Outcome High 1 if Sales > 8, otherwise 0
- Fit a Classification tree model to Price and Income
Classification and Regression Trees

Carseat data from ISLR package

- Binary Outcome $\text{High} = 1$ if Sales > 8, otherwise 0
- Fit a Classification tree model to Price and Income
- Pick a predictor and a cutpoint to split data

$$X_j \leq s \text{ and } X_k > s$$

to minimize deviance (or SSE for regression) - leads to a root node in a tree
Classification and Regression Trees

Carseat data from ISLR package

- Binary Outcome High 1 if Sales > 8, otherwise 0
- Fit a Classification tree model to Price and Income
- Pick a predictor and a cutpoint to split data

\[X_j \leq s \text{ and } X_k > s \]

- to minimize deviance (or SSE for regression) - leads to a root node in a tree
- continue splitting/partitioning data until stopping criterion is reached (number of observations in a node > 10 and within node deviance > 0.01 deviance of the root node)
Classification and Regression Trees

Carseat data from ISLR package

- Binary Outcome High 1 if Sales > 8, otherwise 0
- Fit a Classification tree model to Price and Income
- Pick a predictor and a cutpoint to split data

\[X_j \leq s \text{ and } X_k > s \]

to minimize deviance (or SSE for regression) - leads to a root node in a tree

- continue splitting/partitioning data until stopping criterion is reached (number of observations in a node > 10 and within node deviance > 0.01 deviance of the root node)
- Prediction is mean or proportion of successes of data in terminal nodes
Classification and Regression Trees

Carseat data from ISLR package

- Binary Outcome High 1 if Sales > 8, otherwise 0
- Fit a Classification tree model to Price and Income
- Pick a predictor and a cutpoint to split data

\[X_j \leq s \text{ and } X_k > s \]

...to minimize deviance (or SSE for regression) - leads to a root node in a tree

- continue splitting/partitioning data until stopping criterion is reached (number of observations in a node \(\geq 10 \) and within node deviance \(> 0.01 \) deviance of the root node)
- Prediction is mean or proportion of successes of data in terminal nodes
- Output is a decision tree
Classification and Regression Trees

Carseat data from ISLR package

- Binary Outcome High 1 if Sales > 8, otherwise 0
- Fit a Classification tree model to Price and Income
- Pick a predictor and a cutpoint to split data

\[X_j \leq s \text{ and } X_k > s \]

to minimize deviance (or SSE for regression) - leads to a root node in a tree

- continue splitting/partitioning data until stopping criterion is reached (number of observations in a node > 10 and within node deviance > 0.01 deviance of the root node)
- Prediction is mean or proportion of successes of data in terminal nodes
- Output is a decision tree
- regression or classification function is nonlinear in predictors
Classification and Regression Trees

Carseat data from ISLR package

- Binary Outcome High 1 if Sales > 8, otherwise 0
- Fit a Classification tree model to Price and Income
- Pick a predictor and a cutpoint to split data

\[X_j \leq s \text{ and } X_k > s \]

to minimize deviance (or SSE for regression) - leads to a root node in a tree

- continue splitting/partitioning data until stopping criterion is reached (number of observations in a node > 10 and within node deviance > 0.01 deviance of the root node)
- Prediction is mean or proportion of successes of data in terminal nodes
- Output is a decision tree
- regression or classification function is nonlinear in predictors
- Captures interactions
Carseat Example

```r
library(tree)
data(Carseats)
Carseats = mutate(Carseats, High = factor(ifelse(Carseats$Sales <= 8, "No", "Yes ")))

tree.carseats = tree(High ~ Price + Income, data=Carseats)
```
Carseat Example

```r
plot(tree.carseats)
text(tree.carseats)
```

```
<table>
<thead>
<tr>
<th>Price &lt; 92.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Price &lt; 142</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>Income &lt; 60.5</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>No</td>
</tr>
</tbody>
</table>
```
Partition

\texttt{partition.tree(tree.carseats)}
\texttt{points(Carseats$Price, Carseats$Income, col=Carseats$High)}
node), split, n, deviance, yval, (yprob)
* denotes terminal node
##
1) root 400 541.50 No (0.5900 0.4100)
2) Price < 92.5 62 66.24 Yes (0.2258 0.7742) *
3) Price > 92.5 338 434.80 No (0.6568 0.3432)
6) Price < 142 287 382.10 No (0.6167 0.3833)
12) Income < 60.5 113 128.70 No (0.7434 0.2566)
13) Income > 60.5 174 240.40 No (0.5345 0.4655)
7) Price > 142 51 36.95 No (0.8824 0.1176)
14) Income < 62.5 19 0.00 No (1.0000 0.0000) *
15) Income > 62.5 32 30.88 No (0.8125 0.1875) *
Summary

```
summary(tree.carseats)

##
## Classification tree:
## tree(formula = High ~ Price + Income, data = Carseats)
## Number of terminal nodes:  5
## Residual mean deviance:  1.18 = 466.2 / 395
## Misclassification error rate: 0.325 = 130 / 400
```
All Variables

tree.carseats =\texttt{tree}(\texttt{High} \sim \texttt{.} - \texttt{Sales}, \texttt{data=}\texttt{Carseats})
\texttt{summary}(\texttt{tree.carseats})

Classification tree:
\texttt{tree(formula = High} \sim \texttt{.} - \texttt{Sales, data = Carseats)}
Variables actually used in tree construction:
[1] "ShelveLoc" "Price" "Income" "CompPrice"
[6] "Advertising" "Age" "US"
Number of terminal nodes: 27
Residual mean deviance: 0.4575 = 170.7 / 373
Misclassification error rate: 0.09 = 36 / 400

Overfitting?
Classification Error

```r
set.seed(2)
train = sample(1:nrow(Carseats), 200)
Carseats.test = Carseats[-train,]

tree.carseats = tree(High ~ . - Sales, data = Carseats, subset = train)
tree.pred = predict(tree.carseats, Carseats.test, type = "class")
table(tree.pred, Carseats.test$High)

##
## tree.pred No Yes
## No 86 27
## Yes 30 57

(30 + 27)/200 # classification error

## [1] 0.285
```
Cost-Complexity Pruning

1. Grow a large tree on training data, stopping when each terminal node has fewer than some minimum number of observations.
Cost-Complexity Pruning

1. Grow a large tree on training data, stopping when each terminal node has fewer than some minimum number of observations
2. Prediction for region m is the Class c that $\max_c \hat{\pi}_{mc}$
Cost-Complexity Pruning

1. Grow a large tree on training data, stopping when each terminal node has fewer than some minimum number of observations.
2. Prediction for region m is the Class c that $\max_c \hat{\pi}_{mc}$.
3. Snip off the least important splits via cost-complexity pruning to the tree in order to obtain a sequence of best subtrees indexed by cost parameter k.

Cost-Complexity Pruning

1. Grow a large tree on training data, stopping when each terminal node has fewer than some minimum number of observations

2. Prediction for region m is the Class c that $\max_c \hat{\pi}_{mc}$

3. Snip off the least important splits via cost-complexity pruning to the tree in order to obtain a sequence of best subtrees indexed by cost parameter k,

$$\frac{N_{\text{miss}}}{N} - k|\mathcal{T}|$$

missclassification error penalized by number of terminal nodes
Cost-Complexity Pruning

1. Grow a large tree on training data, stopping when each terminal node has fewer than some minimum number of observations

2. Prediction for region \(m \) is the Class \(c \) that \(\max_c \hat{\pi}_{mc} \)

3. Snip off the least important splits via cost-complexity pruning to the tree in order to obtain a sequence of best subtrees indexed by cost parameter \(k \),

\[
\frac{N_{miss}}{N} - k|T|
\]

missclassification error penalized by number of terminal nodes

4. Using \(K \)-fold cross validation, compute average cost-complexity for each \(k \)
Cost-Complexity Pruning

1. Grow a large tree on training data, stopping when each terminal node has fewer than some minimum number of observations.
2. Prediction for region m is the Class c that $\max_c \hat{\pi}_{mc}$
3. Snip off the least important splits via cost-complexity pruning to the tree in order to obtain a sequence of best subtrees indexed by cost parameter k,

$$\frac{N_{\text{miss}}}{N} - k|T|$$

missclassification error penalized by number of terminal nodes
4. Using K-fold cross validation, compute average cost-complexity for each k
5. Pick subtree with smallest penalized error
Pruning via Cross Validation

```r
set.seed(2)
cv.carseats = cv.tree(tree.carseats, FUN=prune.misclass)
```
prune.carseats = prune.misclass(tree.carseats ,best = 9)
Miss-classification after Selection

tree.pred = predict(prune.carseats, Carseats.test, type="class")
table(tree.pred, Carseats.test$High)

##
tree.pred No Yes
No 94 24
Yes 22 60

\[
\frac{94 + 60}{200} \quad \text{# classified Correctly}
\]

[1] 0.77
Tree with another Random Split of Data

ShelveLoc:ac

Advertising < 12.5

Price < 107.5

CompPrice < 129.5

Price < 92

ShelveLoc:a

CompPrice < 119.5

CompPrice < 127

Price < 144.5

ShelveLoc:a

Income < 65.5

CompPrice < 144.5

Age < 48.5

Population < 134.5

Price < 142.5

Age < 56.5

Income < 97

Age < 40.5

Price < 98.5

U$:a

No
Bagging: Bootstrap Aggregation

- Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)

- Reduce variability by averaging over multiple training sets!

- Do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement)

- Generate B bootstrap sample of observations from the single training data

- Calculate predictions for the bth sample $\hat{f}_b(x)$

- Bagging (Bootstrap Aggregation) estimate is $\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum \hat{f}_b(x)$

- Trees are grown deep so little bias (although could prune)

- Reduce variance by averaging many trees across the bootstrap samples
Bagging: Bootstrap Aggregation

- Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)
- Reduce variability by averaging over multiple training sets!
Bagging: Bootstrap Aggregation

- Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)
- Reduce variability by averaging over multiple training sets!
- do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement)
Bagging: Bootstrap Aggregation

- Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)
- Reduce variability by averaging over multiple training sets!
- Do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement)
 - Generate B bootstrap sample of observations from the single training data

Bagging (Bootstrap Aggregation) estimate is

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b} \hat{f}_b(x)$$

Trees are grown deep so little bias (although could prune)
- Reduce variance by averaging many trees across the bootstrap samples
Bagging: Bootstrap Aggregation

- Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)
- Reduce variability by averaging over multiple training sets!
- do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement)
 - Generate B bootstrap sample of observations from the single training data
 - Calculate predictions for the bth sample $\hat{p}_b(x)$

Bagging (Bootstrap Aggregation) estimate is $\hat{f}_{bag}(x) = \frac{1}{B} \sum \hat{f}_b(x)$

Trees are grown deep so little bias (although could prune)
Reduce variance by averaging many trees across the bootstrap samples
Bagging: Bootstrap Aggregation

▶ Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)
▶ Reduce variability by averaging over multiple training sets!
▶ do not have access to multiple training sets so create them via bootstrap samples (sample of size \(n \) with replacement)
 ▶ Generate B bootstrap sample of observations from the single training data
 ▶ Calculate predictions for the \(b \)th sample \(\hat{f}_b(x) \)
 ▶ Bagging (Bootstrap Aggregation) estimate is

\[
\hat{f}_{bag}(x) = \frac{1}{B} \sum \hat{f}_b(x)
\]

▶ Trees are grown deep so little bias (although could prune)
Bagging: Bootstrap Aggregation

- Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)
- Reduce variability by averaging over multiple training sets!
- Do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement)
 - Generate B bootstrap sample of observations from the single training data
 - Calculate predictions for the bth sample $\hat{f}_b(x)$
 - Bagging (Bootstrap Aggregation) estimate is

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x)$$

- Trees are grown deep so little bias (although could prune)
- Reduce variance by averaging many trees across the bootstrap samples
Bagging: Bootstrap Aggregation

- Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)
- Reduce variability by averaging over multiple training sets!
- do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement)
 - Generate B bootstrap sample of observations from the single training data
 - Calculate predictions for the bth sample $\hat{f}(x)$
 - Bagging (Bootstrap Aggregation) estimate is

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum \hat{f}(x)$$

- Trees are grown deep so little bias (although could prune)
- Reduce variance by averaging many trees across the bootstrap samples
Trees are simple to understand, but not as competitive with other supervised learning approaches for prediction/classification.
Trees are simple to understand, but not as competitive with other supervised learning approaches for prediction/classification. Ways to improving Trees through multiple trees in some ensemble:

- Bagging
Trees are simple to understand, but not as competitive with other supervised learning approaches for prediction/classification. Ways to improving Trees through multiple trees in some ensemble:

▶ Bagging
▶ Random Forests
Trees are simple to understand, but not as competitive with other supervised learning approaches for prediction/classification. Ways to improving Trees through multiple trees in some ensemble:

- Bagging
- Random Forests
- Boosting
Trees are simple to understand, but not as competitive with other supervised learning approaches for prediction/classification. Ways to improving Trees through multiple trees in some ensemble:

- Bagging
- Random Forests
- Boosting
- BART (Bayesian Additive Regression Trees)
Trees are simple to understand, but not as competitive with other supervised learning approaches for prediction/classification. Ways to improving Trees through multiple trees in some ensemble:

- Bagging
- Random Forests
- Boosting
- BART (Bayesian Additive Regression Trees)

Combining trees will yield improved prediction accuracy, but with loss of interpretability.