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Zellner's g-prior

Centered model:
Y=1,a+XB+e¢

where X€¢ is the centered design matrix where all variables have
had their mean subtracted

» pla) x 1

> p(0?) x 1/o?

> B, | a,0% v ~ N(0, go®(X5'X5) ™)
which leads to marginal likelihood of M, that is proportional to

-1

p(Y [ M) = C(1+g)" 5 (1+g(1—R2))

where R? is the usual coefficient of determination for model M.
Trade-off of model complexity versus goodness of fit

Lastly, assign distribution to space of models
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Priors on Model Space

p(M,) < p(7)
» p(vj =1) =.5= P(M,) = .5P Uniform on space of models
P~y ~ Bm(p7 5)

>y T bS Ber(7) and m ~ Beta(a, b) then py ~ BB,(a, b)

Fp+ 1) (py+a)(p—py+b)(a+b)

P(py [ P2, b) = [(py + D) (p— py + 1) (p+a + b)I(a)T(b)

» py ~ BB,(1,1) ~ Unif(0, p)



USair Data

library (BAS)
poll.bma = bas.lm(log(S02) ~ temp + log(mgffirms) +
log(popn) + wind +
precip+ raindays,
data=pollution,
prior="g-prior",
alpha=41, # n
n.models=2"6,
modelprior = uniform(),
method="deterministic")
> poll.bma

Marginal Posterior Inclusion Probabilities:
Intercept temp log(mfgfirms) log(popn) wind precip
1.0000 0.9755 0.7190 0.2757 0.7654 0.5994



Plots
plot(poll.bma, ask=F)

Residuals vs Fitted
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Posterior Distribution with Uniform Prior on Model Space

image(poll.bma)
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Posterior Distribution with BB(1,p) Prior on Model Space

image(poll-bb.bma)
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Jeffreys Scale of Evidence

» Bayes Factor = ratio of marginal likelihoods
» Posterior odds = Bayes Factor x Prior odds

B = BF[Mg : M,] and 1/B = BF[M,, : My]

Bayes Factor | Interpretation
B >1 | Hy supported

1>B> 10_% minimal evidence against Hy

1072 > B > 107! | substantial evidence against Hy
107! > B > 1072 | strong evidence against Hp
1072 > B | decisive evidence against Hy

of testing one hypothesis with equal prior odds

in context




Coefficients

beta = coef(poll.bma)
par(mfrow=c(2,3)); plot(beta, subset=2:7,ask=F)
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» What happens to BF as g — o0?
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Information Paradox

The Bayes factor for comparing M, to the null model:

BF (M, : Mo) = (14 g)(""1P)/2(1 4 g(1 — R?))~("=1)/2

v

Let g be a fixed constant and take n fixed.

_ R3 /Py
Let F = ti=rey /(157

As R,?/ — 1, F — 00 LR test would reject My where F is the
usual F statistic for comparing model M, to My

v

v

v

BF converges to a fixed constant (1 + g) P/ (does not go
to infinity
“Information Inconsistency” see Liang et al JASA 2008
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Mixtures of g priors & Information consistency

Need BF — oo if R? — 1 < E4[(1 + g)~P+/?] diverges for
py < n—1 (proof in Liang et al)

» Zellner-Siow Cauchy prior

» hyper-g prior or hyper-g/n (Liang et al JASA 2008)

» robust prior (Bayarrri et al Annals of Statistics 2012
All have tails that behave like a Cauchy distribution
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Mortality & Pollution

» Data from Statistical Sleuth 12.17

> 60 cities

> response Mortality

» measures of HC, NOX, SO2

> Is pollution associated with mortality after adjusting for other
socio-economic and meteorological factors?

» 15 predictor variables implies 2% = 32,768 possible models

» Use Zellner-Siow Cauchy prior 1/g ~ G(1/2,n/2)

mort.bma = bas.lm(MORTALITY ~ ., data=mortality,
prior="ZS-null",
alpha=60, n.models=2"15,
update=100, initprobs="eplogp")



Posterior Distributions

Model Dimension
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Posterior Probabilities

>

What is the probability that there is no pollution effect?

» Sum posterior model probabilities over all models that include

vV vV vV Vv Y

v

at least one pollution variable

> which.mat = list2matrix.which(mort.bma,1:(2°15))
> poll.in = (which.mat[, 14:16] %xJ) rep(1, 3)) > O
> sum(poll.in * mort.bma$postprob)

[1] 0.9889641

Posterior probability no effect is 0.011

Odds that there is an effect 0.989/0.011 = 89.
Prior Odds 7 = (1 — .53)/.53

Bayes Factor for a pollution effect 89.9/7 = 12.8

Bayes Factor for NOX based on marginal inclusion probability
0.917/(1 —0.917) = 11.0

Marginal inclusion probability for logHC = 0.427144

» Marginal inclusion probability for logSO2 = 0.218978

Bayes Factors are not additive! Better to work with, probabilities...
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Coefficients
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Coefficients
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Effect Estimation

» Coefficients in each model are adjusted for other variables in
the model

» OLS: leave out a predictor with a non-zero coefficient then
estimates are biased!

» Model Selection in the presence of high correlation, may leave
out "redundant” variables;

» improved MSE for prediction (Bias-variance tradeoff)

» in BMA all variables are included, but coefficients are shrunk
to 0
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Other Problems

» Computational if p > 35 enumeration is difficult

Gibbs sampler or Random-Walk algorithm on ~

poor convergence/mixing with high correlations

Metropolis Hastings algorithms more flexibility

" Stochastic Search” (no guarantee samples represent posterior)

vV vy vy

» Prior Choice: Choice of prior distributions on 3 and on -~

Model averaging versus Model Selection — what are objectives?
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