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Bayesian Ridge: Prior on k

Reparameterization:

Y = 1α + (I− P1)XS−1/2S1/2β + ε

= 1α + Xsβs + ε

S = diag[(n − 1)Var(Xj)]

(Xs)TXs = Corr(X)

Hierarchical prior

I p(α | φ,βs , κ) ∝ 1

I βs | φ, κ ∼ N(0, I(φκ)−1)

I p(φ | κ) ∝ 1/φ

I prior on κ? Take κ | φ ∼ G(1/2, 1/2)
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Posterior Distributions

Joint Distribution

I α,βs , φ | κ,Y Normal-Gamma family given Y and κ

I κ | Y not tractable

Obtain marginal for βs via

I Numerical integration

I MCMC: Full conditionals
Pick initial values α(0),β

(0)
s , φ(0),

Set t = 1

1. Sample κ(t) ∼ p(κ | α(t−1),β(t−1)
s , φ(t−1),Y)

2. Sample α(t),β(t)
s , φ(t) | κ(t),Y

3. Set t = t + 1 and repeat until t > T

Use Samples α(t),β
(t)
s , φ(t), κ(t) for t = B, . . . ,T for inference

Change of variables to get back to β
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Full Conditional for κ
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Rao-Blackwellization

What is “best” estimate of βs from Bayesian perspective?

I Loss (βs − a)T (βs − a) under action a

I Decision Theory: Take action a that minimizes posterior
expected loss which is posterior mean of βs .

I Estimate of posterior mean is Ergodic Average of MCMC:∑
i β

(t)
s /T →

I Posterior mean given κ

β̃s(κ) = (XsTXs + κI)−1XsTXs β̂s

I Rao-Blackwell Estimate

1

T

∑
t

(XsTXs + κ(t)I)−1XsTXs β̂s
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Testimators & Canonical Model

UpY = LV Tβs + εp ⇔ UpY = Lγ + εp

Goldstein & Smith (1974) have shown that if

1. 0 ≤ hi ≤ 1 and γ̃i = hi γ̂i

2.
γ2i

Var(γ̂i )
< 1+hi

1−hi

then γ̃i has smaller MSE than γ̂i

Case: If γj < Var(γ̂i ) = σ2/l2i then hi = 0 and γ̃i is better.

Apply: Estimate σ2 with SSE/(n - p - 1) and γi with γ̂i . Set
hi = 0 if t-statistic is less than 1.

“testimator” - see also Sclove (JASA 1968) and Copas ( JRSSB
1983)
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Generalized Ridge

Instead of γj
iid∼ N(0, σ2/κ) take

γj
ind∼ N(0, σ2/κi )

Then Condition of Goldstein & Smith becomes

γ2i < σ2
[

2

κi
+

1

l2i

]
I If li is small almost any κi will improve over OLS

I if l2i is large then only very small values of κi will give an
improvement.

I Prior on κi?

I Prior that can capture the feature above?
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I Induced prior on βs?

γj | σ2, κj
ind∼ N(0, σ2/κj)⇔ βs ∼ N(0, σ2V K−1VT )

which is not diagonal.

I Or start with
βs | σ2,K ∼ N(0, σ2K−1)

I loss of invarince with linear transformations of Xs

I XsAA−1β = Zα where A−1β = α
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Related Regression on PCA
I Principal Components of X may be obtained via the Singular

Value Decomposition:

X = UpLV
T

I the l2i are the eigenvalues of XTX

Y = 1α + ULVTβ + ε

= 1α + Fγ + ε

I Columns Fi ∝ Ui are the principal components of the data
multivariate data X1, . . . ,Xp

I If the direction Fi is ill-defined (li = 0 or λi < ε then we may
decide to not use Fi in the model.

I equivalent to setting
I γ̃i = γ̂i if li ≥ δ
I γ̃i = 0 if li < ε

How to choose δ? Why should Y be related to first k principal
components?
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Summary

I OLS can clearly be dominated by other estimators for
extimating β

I Lead to Bayes like estimators

I choice of penalties or prior hyper-parameters

I hierarchical model with prior on κi
I Shrinkage, dimension reduction & variable selection ?

I what loss function? Estimation versus prediction? Copas 1983


