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Outline

Topics

I Normality & Transformations

I Box-Cox

I Nonlinear Regression

Readings: Christensen Chapter 13 & Wakefield Chapter 6
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Linear Model

Linear Model again:
Y = µ + ε

Assumptions:

µ ∈ C (X) ⇔ µ = Xβ

ε ∼ N(0n, σ
2In)

I Normal Distribution for ε with constant variance

I Outlier Models

I Robustify with heavy tailed error distributions

I Computational Advantages of Normal Models
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Normality

Recall

e = (I− PX)Y

= (I− PX)(Xβ̂ + ε)

= (I− PX)ε

ei = εi −
n∑

j=1

hijεj

Lyapunov CLT1 implies that residuals will be approximately normal
(even for modest n), if the errors are not normal

“Supernormality of residuals”

1independent but not identically distributed
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Q-Q Plots

I Order ei : e(1) ≤ e(2) . . . ≤ e(n) sample order statistics or
sample quantiles

I Let z(1) ≤ z(2) . . . z(n) denote the expected order statistics of a
sample of size n from a standard normal distribution
“theoretical quantiles”

I If the ei are normal then E[e(i)] = σz(i)
I Expect that points in a scatter plot of e(i) and z(i) should be

on a straight line.

I Judgment call - use simulations to gain experience!
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Animal Example
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Residual Plots
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Box-Cox Transformation
Box and Cox (1964) suggested a family of power transformations
for Y > 0

U(Y, λ) = Y (λ) =

{
(Y λ−1)

λ λ 6= 0
log(Y ) λ = 0

I Estimate λ by maximum Likelihood

L(λ,β, σ2) ∝
∏

f (yi | λ,β, σ2)

I U(Y, λ) = Y (λ) ∼ N(Xβ, σ2)

I Jacobian term is
∏

i y
λ−1
i for all λ

I Profile Likelihood based on substituting MLE β and σ2 for
each value of λ is

log(L(λ) ∝ (λ− 1)
∑
i

log(Yi )−
n

2
log(SSE(λ))
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Profile Likelihood
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Residuals After Transformation of Response
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Residuals After Transformation of Both
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Transformed Data
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Test that Dinos are Outliers

Res.Df RSS Df Sum of Sq F Pr(>F)

1 23 12.12
2 26 60.99 -3 -48.87 30.92 0.0000

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.1504 0.2006 10.72 0.0000
log(body) 0.7523 0.0457 16.45 0.0000

Triceratops -4.7839 0.7913 -6.05 0.0000
Brachiosaurus -5.6662 0.8328 -6.80 0.0000

Dipliodocus -5.2851 0.7949 -6.65 0.0000

Dinosaurs come from a different population from mammals
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Model Selection Priors

brains.bas = bas.lm(log(brain) ~ log(body) + diag(28),

data=Animals, prior="hyper-g-n", a=3,

modelprior=beta.binomial(1,28),

method="MCMC", n.models=2^17, MCMC.it=2^18)

# check for convergence

plot(brains.bas$probne0, brains.bas$probs.MCMC)
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image(brains.bas)
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Variance Stabilizing Transformations

I If Y − µ (approximately) N(0, h(µ))

I Delta Method implies that

g(Y )
·∼ N(g(µ), g ′(µ)2h(µ)

I Find function g such that g ′(µ)2/h(µ) is constant

g(Y ) ∼ N(g(µ), c)

I Poisson Counts (Y > 3): g is square root transformation

I Binomial: arcsin(
√
Y )

Note: transformation for normality may not be the same as the
variance stabilizing transformation; boxcox assumes mean function
is correct

Generalized Linear Models preferable



duke.eps

Variance Stabilizing Transformations

I If Y − µ (approximately) N(0, h(µ))

I Delta Method implies that

g(Y )
·∼ N(g(µ), g ′(µ)2h(µ)

I Find function g such that g ′(µ)2/h(µ) is constant

g(Y ) ∼ N(g(µ), c)

I Poisson Counts (Y > 3): g is square root transformation

I Binomial: arcsin(
√
Y )

Note: transformation for normality may not be the same as the
variance stabilizing transformation; boxcox assumes mean function
is correct

Generalized Linear Models preferable



duke.eps

Variance Stabilizing Transformations

I If Y − µ (approximately) N(0, h(µ))

I Delta Method implies that

g(Y )
·∼ N(g(µ), g ′(µ)2h(µ)

I Find function g such that g ′(µ)2/h(µ) is constant

g(Y ) ∼ N(g(µ), c)

I Poisson Counts (Y > 3): g is square root transformation

I Binomial: arcsin(
√
Y )

Note: transformation for normality may not be the same as the
variance stabilizing transformation; boxcox assumes mean function
is correct

Generalized Linear Models preferable



duke.eps

Variance Stabilizing Transformations

I If Y − µ (approximately) N(0, h(µ))

I Delta Method implies that

g(Y )
·∼ N(g(µ), g ′(µ)2h(µ)

I Find function g such that g ′(µ)2/h(µ) is constant

g(Y ) ∼ N(g(µ), c)

I Poisson Counts (Y > 3): g is square root transformation

I Binomial: arcsin(
√
Y )

Note: transformation for normality may not be the same as the
variance stabilizing transformation; boxcox assumes mean function
is correct

Generalized Linear Models preferable



duke.eps

Variance Stabilizing Transformations

I If Y − µ (approximately) N(0, h(µ))

I Delta Method implies that

g(Y )
·∼ N(g(µ), g ′(µ)2h(µ)

I Find function g such that g ′(µ)2/h(µ) is constant

g(Y ) ∼ N(g(µ), c)

I Poisson Counts (Y > 3): g is square root transformation

I Binomial: arcsin(
√
Y )

Note: transformation for normality may not be the same as the
variance stabilizing transformation; boxcox assumes mean function
is correct

Generalized Linear Models preferable
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Nonlinear Models

Drug concentration of caldralazine at time Xi in a cardiac failure
patient given a single 30mg dose (D = 30) given by

µ(β) =

[
D

V
exp(−κexi )

]
with β = (V , κe) V = volume and κe is the elimination rate

If log(Yi ) = log(µ(β)) + εi with εi
iid∼ N(0, σ2) then the model is

intrinisically linear (can transform to linear model)

log(µ(β)) = log

[
D

V
exp(−κexi )

]
= log[D]− log(V )− κexi

log(Yi )− log[30] = β0 + β1xi + εi
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Nonlinear Least Squares

> conc.nlm = nls( log(y) ~ log((30/V)*exp(-k*x)),

data=df, start=list(V=vhat, k=khat))

> summary(conc.nlm)

Formula: log(y) ~ log((30/V) * exp(-k * x))

Parameters:

Estimate Std. Error t value Pr(>|t|)

V.(Intercept) 16.66331 7.11923 2.341 0.057796 .

k.x 0.15211 0.02368 6.423 0.000673 ***

Residual standard error: 0.7411 on 6 degrees of freedom

Number of iterations to convergence: 0

Achieved convergence tolerance: 3.978e-09
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Additive Errors

I under multiplicative log normal errors model is equivalent to
linear model

I with additive Gaussian errors (or other distributions) model is
intrinsically nonlinear - nonlinear least squares (or posterior
sampling)

Yi = (30/V ) ∗ exp(−k ∗ xi ) + εi

εi
iid∼ N(0, σ2)
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Intrinsically Nonlinear Model

> summary(conc.nlm)

Formula: y ~ (30/V) * exp(-k * x)

Parameters:

Estimate Std. Error t value Pr(>|t|)

V 13.06506 0.60899 21.45 6.69e-07 ***

k 0.18572 0.01124 16.52 3.14e-06 ***

---

Residual standard error: 0.05126 on 6 degrees of freedom

Number of iterations to convergence: 4

Achieved convergence tolerance: 7.698e-06
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Fitted Values & Residuals
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Functions of Interest

Interest is in

I clearance: Vκe

I elimination half-life x1/2 = log 2/κe

I Use properties of MLEs: asymptotically β̂ ∼ N
(
β, I (β̂)−1

)
I (Multivariate) Delta Method for transformations

I Asymptotic Distributions

Bayes obtain the posterior directly for parameters and functions of
parameters! Priors? Constraints on Distributions?
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Summary

I Optimal transformation for normality (MLE) depends on
choice of mean function

I May not be the same as the variance stabilizing transformation

I Nonlinear Models as suggested by Theory or Generalized
Linear Models are alternatives

I “normal” estimates may be useful approximations for large p
or for starting values for more complex models (where
convergence may be sensitive to starting values)
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