#### Mixtures of Prior Distributions

Hoff Chapter 9, Liang et al 2007, Hoeting et al (1999), Clyde & George (2004)

November 9, 2017

#### Bartlett's Paradox

The Bayes factor for comparing  $\mathcal{M}_{\gamma}$  to the null model:

$$BF(\mathcal{M}_{\gamma}: \mathcal{M}_0) = (1+g)^{(n-1-\rho_{\gamma})/2} (1+g(1-R_{\gamma}^2))^{-(n-1)/2}$$

For  $g \to \infty$ , the  $BF \to 0$  for fixed n and  $R_\gamma^2$ 

Increasing vagueness in the prior leads to BF favoring the null model!

#### Information Paradox

The Bayes factor for comparing  $\mathcal{M}_{\gamma}$  to the null model:

$$BF(\mathcal{M}_{\gamma}: \mathcal{M}_0) = (1+g)^{(n-1-p_{\gamma})/2} (1+g(1-R^2))^{-(n-1)/2}$$

- Let g be a fixed constant and take n fixed.
- $\blacktriangleright \text{ Let } F = \frac{R_{\gamma}^2/p_{\gamma}}{(1-R_{\gamma}^2)/(n-1-p_{\gamma})}$
- ▶ As  $R^2_{\gamma} \to 1$ ,  $F \to \infty$  LR test would reject  $\mathfrak{M}_0$  where F is the usual F statistic for comparing model  $\mathfrak{M}_{\gamma}$  to  $\mathfrak{M}_0$
- ▶ BF converges to a fixed constant  $(1+g)^{-p_{\gamma}/2}$  (does not go to infinity

"Information Inconsistency" see Liang et al JASA 2008

## Mixtures of g priors & Information consistency

Need  $BF \to \infty$  if  $R^2 \to 1 \Leftrightarrow \mathsf{E}_g[(1+g)^{(n-1-p_\gamma)/2}]$  diverges (proof in Liang et al)

- Zellner-Siow Cauchy prior
- hyper-g prior (Liang et al JASA 2008)

$$p(g) = \frac{a-2}{2}(1+g)^{-a/2}$$

or 
$$g/(1+g) \sim Beta(1, (a-2)/2)$$
 need  $2 < a \le 3$ 

- ► Hyper-g/n  $(g/n)(1+g/n) \sim (Beta(1,(a-2)/2))$
- ▶ Jeffreys prior on g corresponds to a = 2 (improper)
- ▶ robust prior (Bayarrri et al Annals of Statistics 2012
- ► Intrinsic prior (Womack et al JASA 2015)

All have prior tails for  $\beta$  that behave like a Cauchy distribution and (the latter 4) marginal likelihoods that can be computed using special hypergeometric functions ( ${}_2F_1$ , Appell  $F_1$ )

## Desiderata - Bayarri et al 2012 AoS

- Proper priors on non-common coefficients
- If LR overwhelmingly rejects a model, Bayesian should also reject
- Selection Consistency: large samples probability of the true model goes to one.
- ▶ Intrinsic prior consistency (prior converges to a fixed proper prior as  $n \to \infty$
- Invariance (invariance under scale/location changes of data/model leads to  $p(\beta_0, \phi) \propto 1/\phi$ ); other group invariance, rotation invariance.
- ightharpoonup predictive distributions match under minimal sample sizes so that BF=1

Mixtures of g priors like Zellner-Siow, hyper-g-n, robust, intrinsic

## Mortality & Pollution

- Data from Statistical Sleuth 12.17
- ▶ 60 cities
- response Mortality
- measures of HC, NOX, SO2
- Is pollution associated with mortality after adjusting for other socio-economic and meteorological factors?
- ▶ 15 predictor variables implies  $2^{15} = 32,768$  possible models
- ▶ Use Zellner-Siow Cauchy prior  $1/g \sim G(1/2, n/2)$

#### Posterior Distributions



#### Posterior Probabilities

- ▶ What is the probability that there is no pollution effect?
- Sum posterior model probabilities over all models that include no pollution variables
- > which.mat = list2matrix.which(mort.bma,1:(2^15))
  - > poll.in = (which.mat[, 14:16] %\*% rep(1, 3)) > 0
    > sum(poll.in \* mort.bma\$postprob)
    [1] 0.9889641
- ▶ Posterior probability no effect is 0.011
- ▶ Posterior Odds that there is an effect (1 .011)/(.011) = 89.
- Prior Odds 7 = (1 .5<sup>3</sup>)/.5<sup>3</sup>
  Bayes Factor for a pollution effect 89.9/7 = 12.8
- ▶ Bayes Factor for NOX based on marginal inclusion probability 0.917/(1 - 0.917) = 11.0
- ► Marginal inclusion probability for logHC = 0.427144 (*BF* = .745)
- Marginal inclusion probability for logSO2 = 0.218978 (BF = .280)

# Model Space



## Coefficients



## Coefficients



#### Effect Estimation

- Coefficients in each model are adjusted for other variables in the model
- ► OLS: leave out a predictor with a non-zero coefficient then estimates are biased!
- ► Model Selection in the presence of high correlation, may leave out "redundant" variables:
- improved MSE for prediction (Bias-variance tradeoff)
- ▶ Bayes is biased anyway so should we care?

With confounding, should not use plain BMA. Need to change prior to include potential confounders (advanced topic)

### Computational Issues

- ightharpoonup Computational if p > 35 enumeration is difficult
  - lacktriangleright Gibbs sampler or Random-Walk algorithm on  $\gamma$
  - poor convergence/mixing with high correlations
  - Metropolis Hastings algorithms more flexibility (method="MCMC")
  - "Stochastic Search" (no guarantee samples represent posterior)
    - Variational, EM, etc to find modal model
    - ▶ in BMA all variables are included, but coefficients are shrunk to 0; alternative is to use Shrinkage methods
    - Models with Non-estimable parameters? (use generalized inverse)
- ightharpoonup Prior Choice: Choice of prior distributions on eta and on  $\gamma$

Model averaging versus Model Selection – what are objectives?

## BAS Algorithm - Clyde, Ghosh, Littman - JCGS

- Sampling w/out Replacement method="BAS"
- ► MCMC Sampling method="MCMC"

See package Vignette