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Outline

Topics
» Gauss-Markov Theorem
» Estimability and Prediction

Readings: Christensen Chapter 2, Chapter 6.3, ( Appendix A, and
Appendix B as needed)
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Under the assumptions:

EY] = n
Con(Y) = o2,

every estimable function » = XT3 has a unique unbiased linear
estimator 1) which has minimum variance in the class of all
unbiased linear estimators.
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Gauss-Markov Theorem

Theorem
Under the assumptions:

EY] = n
Con(Y) = o2,

every estimable function » = XT3 has a unique unbiased linear
estimator ﬁ which has minimum variance in the class of all
unbiased linear estimators. 12 = A'3 where B is any set of
ordinary least squares estimators.
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Unique Unbiased Estimator

Lemma

» If » = AT 3 is estimable, there exists a unique linear unbiased
estimator of 1) = a*TY with a* € C(X).
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Unique Unbiased Estimator

Lemma

» If » = AT 3 is estimable, there exists a unique linear unbiased
estimator of 1) = a*TY with a* € C(X).

» If aY is any unbiased linear estimator of 1) then a* is the
projection of a onto C(X), i.e. a* = Pxa.
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Unique Unbiased Estimator

Proof

» Since 1) is estimable, there exists an a € R” for which
E[a’Y] = AT3 =4 with AT =a’X

duke.eps



Unique Unbiased Estimator

Proof

» Since 1) is estimable, there exists an a € R” for which
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Unique Unbiased Estimator

Proof

» Since 1) is estimable, there exists an a € R” for which
E[a’Y] = AT3 =4 with AT =a’X

» Let a = a* + u where a* € C(X) and u € C(X)*+

» Then

Yv=E[a’Y] = E[@a*"Y]+E[uY]

duke.eps



Unique Unbiased Estimator

Proof

» Since 1) is estimable, there exists an a € R” for which
E[a’Y] = AT3 =4 with AT =a’X

» Let a = a* + u where a* € C(X) and u € C(X)*+

» Then

Yv=E[a’Y] = E[@a*"Y]+E[uY]
E@*"Y]+0

Eu’Y] = u'X3

sinceu L C(X) (i.e. ue C(X)Y) Eu’Y] =0
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Unique Unbiased Estimator

Proof

» Since 1) is estimable, there exists an a € R” for which
E[a’Y] = AT3 =4 with AT =a’X

» Let a = a* + u where a* € C(X) and u € C(X)*+

» Then

Yv=E[a’Y] = E[@a*"Y]+E[uY]
E@*"Y]+0

Eu’Y] = u'X3

sinceu L C(X) (i.e. ue C(X)Y) Eu’Y] =0
» Thus a*TY is also an unbiased linear estimator of 7 with
a* € C(X)
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Uniqueness

Proof.
Suppose that there is another v € C(X) such that E[v Y] = .
Then for all 3
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Uniqueness

Proof.
Suppose that there is another v € C(X) such that E[v Y] = .
Then for all 3

0 = E[@TY]-E[v"Y]
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Uniqueness

Proof.
Suppose that there is another v € C(X) such that E[v Y] = .
Then for all 3
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I
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(a*—v)"Xg
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Uniqueness

Proof.

Suppose that there is another v € C(X) such that E[v Y] = .

Then for all 3

o
I
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Uniqueness

Proof.
Suppose that there is another v € C(X) such that E[v Y] = .
Then for all 3

o
I

E[a*"Y] —E[vY]
(a*—v)"Xg
So(a*—v)'X = 0 forallB

» Implies (a* — v) € C(X)*
» but by assumption (a* — v) € C(X) (C(X) is a vector space)
» the only vector in BOTH is 0, so a* = v
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Uniqueness

Proof.
Suppose that there is another v € C(X) such that E[v Y] = .
Then for all 3

o
I

E[a*"Y] —E[vY]
(a* —v)"Xg3
So(a*—v)'X = 0 forallB

» Implies (a* — v) € C(X)*
» but by assumption (a* — v) € C(X) (C(X) is a vector space)
» the only vector in BOTH is 0, so a* = v

Therefore a*TY is the unique linear unbiased estimator of v with
a* € C(X). O
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Proof of Minimum Variance (G-M)

» Let a*TY be the unique unbiased linear estimator of 1/ with
a* € C(X).
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Proof of Minimum Variance (G-M)

» Let a*TY be the unique unbiased linear estimator of 1/ with
a* € C(X).

» Let a’Y be any unbiased estimate of 1; a = a* + u with
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» Let a*TY be the unique unbiased linear estimator of 1/ with
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Proof of Minimum Variance (G-M)

» Let a*TY be the unique unbiased linear estimator of 1/ with
a* € C(X).
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Proof of Minimum Variance (G-M)

» Let a*TY be the unique unbiased linear estimator of 1/ with
a* € C(X).

» Let a’Y be any unbiased estimate of 1; a = a* + u with
a* ¢ C(X) and u € C(X)*+

Var(a™¥) = a’Cov(Y)a

= o°al?
a?([la* || + [|ul|* + 2a* " u)
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Var(a*TY)
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Proof of Minimum Variance (G-M)

» Let a*TY be the unique unbiased linear estimator of 1/ with
a* € C(X).

» Let a’Y be any unbiased estimate of 1; a = a* + u with
a* ¢ C(X) and u € C(X)*+

Var(a™¥) = a’Cov(Y)a
= o°|la]?
= o*([la*|* + ul|* + 2a" ")
= *(Ja*[)”+ [ul?) +0
= Var(a*"Y) 4 ¢?||ul|?
> Var(a*TY)

with equality if and only if a = a*
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» Let a*TY be the unique unbiased linear estimator of 1/ with
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Hence a*TY is the unique linear unbiased estimator of ¢ with
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Proof of Minimum Variance (G-M)

» Let a*TY be the unique unbiased linear estimator of 1/ with
a* € C(X).

» Let a’Y be any unbiased estimate of 1; a = a* + u with
a* ¢ C(X) and u € C(X)*+

Var(a™¥) = a’Cov(Y)a
= o°|la]?
= o*([la*|* + ul|* + 2a" ")
= *(Ja*[)”+ [ul?) +0
= Var(a*"Y) 4 ¢?||ul|?
> Var(a*TY)

with equality if and only if a = a*

Hence a*TY is the unique linear unbiased estimator of ¢ with
minimum variance "BLUE" = Best Linear Unbiased Estimater



Continued

Proof.
Show that ¢ = a*TY = A3
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Proof.
Show that ¢ = a*TY = A3
Since a* € C(X) we have a* = Pxa*
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Show that ¢ = a*TY = A3
Since a* € C(X) we have a* = Pxa*
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Continued

Proof.
Show that ¢ = a*TY = A3
Since a* € C(X) we have a* = Pxa*

a’’Yy = a*"Ply
a*TPY
— a*TxB
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Continued

Proof.
Show that ¢ = a*TY = A3
Since a* € C(X) we have a* = Pxa*

a’’Yy = a*"Ply
a*"P, Y
a*TxB
= A3

duke.eps



Continued

Proof.
Show that ) = a*TY = A7
Since a* € C(X) we have a* = Pxa*

a’’Yy = a*"Ply
a* TP, Y
a*TXp3
= A3

for AT =a*TXorA=X"Ta
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MVUE

» Gauss-Markov Theorem says that OLS has minimum variance
in the class of all Linear Unbiased estimators
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MVUE

» Gauss-Markov Theorem says that OLS has minimum variance
in the class of all Linear Unbiased estimators

> Requires just first and second moments

» Additional assumption of normality, OLS = MLEs have
minimum variance out of ALL unbiased estimators (MVUE);
not just linear estimators (requires Completeness and
Rao-Blackwell Theorem - next semester)
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Prediction

» For predicting at new x, is there always a unique unbiased
estimator of E[Y | x,]?
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Prediction

» For predicting at new x, is there always a unique unbiased
estimator of E[Y | x,]?

> If one does exist, how do we know that if we are given A7
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Existence

» X.(3 has a unique unbiased estimator if x, = A = XTa
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Existence

» x.3 has a unique unbiased estimator if x, = A = X'a

» Clearly if x, = x; (ith row of observed data) then it is
estimable with a equal to the vector with a 1 in the /th
position even if X is not full rank!
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Example

x1 = -4:4

x2 =c(-2, 1, -1, 2, 0, 2, -1, 1, -2)

x3 = 3%x1 -2%x2

x4 = x2 - x1 + 4

Y = 1+x1+x2+x3+x4 + c¢(-.5,.5,.5,-.5,0,.5,-.5,-.5,.5)
dev.set = data.frame(Y, x1, x2, x3, x4)

1m1234 = Im(Y ~ x1 + x2 + x3 + x4, data=dev.set)
round(coefficients(1m1234), 4)

## (Intercept) x1 x2 x3 x4
## 5 3 0 NA NA

1m3412 = Im(Y ~ x3 + x4 + x1 + x2, data = dev.set)
round(coefficients(1m3412), 4)

## (Intercept) 5% x4 x1 x2
#i#t -19 3 6 NA NA
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In Sample Predictions

cbind(dev.set, predict(1m1234), predict(1lm3412))

## Y x1 x2 x3 x4 predict(1lm1234) predict(1m3412)
## 1 -7.5 -4 -2 -8 6 =7 =1
## 2 -3.56 -3 1 -11 8 -4 -4
## 3 -0.5 -2 -1 -4 5 -1 -1
# 4 1.5 -1 2 -7 7 2 2
# 5 5.0 0 O 0 4 5 5
# 6 8.5 1 2 -1 5 8 8
## 7 10.5 2 -1 8 1 11 11
## 8 13.5 3 1 7T 2 14 14
## 9 17.5 4 -2 16 -2 17 17

Both models agree for estimating the mean at the observed X
points!
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Out of Sample

out = data.frame(test.set,
Y1234=predict(1m1234, new=test.set),
Y3412=predict (1m3412, new=test.set))
out

##  x1 x2 x3 x4 Y1234 Y3412

## 1 3 1 7 2 14 14
# 2 6 214 4 23 47
# 3 6 214 O 23 23
## 4 0 0 O 4 5 5
##5 0 0 O O 5 -19
# 6 1 2 3 4 8 14
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Out of Sample

out = data.frame(test.set,
Y1234=predict(1m1234, new=test.set),
Y3412=predict (1m3412, new=test.set))
out

##  x1 x2 x3 x4 Y1234 Y3412

## 1 3 1 7 2 14 14
## 2 6 2 14 4 23 47
## 3 6 2 14 O 23 23
##* 4 0 O O 4 5 5
##5 0 0 O O 5 -19
# 6 1 2 3 4 8 14

Agreement for cases 1, 3, and 4 only! Can we determine that
without finding the predictions and comparing?
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Determining Estimable A

» Estimable means that AT = a”X for a € C(X)
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Determining Estimable A

» Estimable means that AT = a”X for a € C(X)
» Transpose: A = XTa for a € C(X)

» A e C(XT) (A€ R(X))

» AL C(XT)+
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Determining Estimable A

>

>

v

v

v

Estimable means that AT = a” X for a € C(X)
Transpose: A = X'a for a € C(X)

A e C(XT) (A e R(X))

AL C(xXT)t

C(XT)* is the null space of X

vl CXT): Xv=0sve N(X)
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Determining Estimable A

» Estimable means that AT = a”X for a € C(X)
» Transpose: A = XTa for a € C(X)

A e C(XT) (X e R(X))

AL C(xXT)t

C(XT)* is the null space of X

v

v

v

vl CXT): Xv=0sve N(X)

v

A L N(X)
if P is a projection onto C(XT) then | — P is a projection
onto N(X) and therefore (I — P)X = 0 if X is estimable

v

Take Pxr = (XTX)(X7X)~ as a projection onto C(X') and show
(I - PxT))\ - Op
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Example

library("estimability" )
cbind(epredict(1lm1234, test.set), epredict(lm3412, test.se

#  [,1] [,2]

## 1 14 14
## 2 NA NA
## 3 23 23
## 4 5 5
## 5 NA NA
#* 6 NA NA

Rows 2, 5, and 6 are not estimable! No linear unbiased estimator

duke.eps



Summary

» When BLUEs exist, under normality they are MVUE (ditto for
prediction - BLUP)
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Summary

» When BLUEs exist, under normality they are MVUE (ditto for
prediction - BLUP)

» BLUE/BLUP do not always for estimation/prediction if X is
not full rank

» may occur with redundancies for modest p < n and of course
p>n

» Eliminate redundancies by removing variables (variable
selection)

» Consider alternative estimators (Bayes and related)
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Other Estimators

What about some estimator g(Y) that is not unbiased?
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Other Estimators

What about some estimator g(Y) that is not unbiased?
» Mean Squared Error for estimator g(Y) of A7 3 is

Elg(Y) = ATB]* = Var(g(Y)) + Bias*(g(Y))

where Bias = E[g(Y)] - A3
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Other Estimators

What about some estimator g(Y) that is not unbiased?
» Mean Squared Error for estimator g(Y) of A7 3 is
Elg(Y) = ATB]* = Var(g(Y)) + Bias*(g(Y))

where Bias = E[g(Y)] - A3
» Bias vs Variance tradeoff

» Can have smaller MSE if we allow some Bias!
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Bayes

» Next Class Bayes Theorem & Conjugate Normal-Gamma
Prior/Posterior distributions

» Read Chapter 2 in Christensen or Wakefield 5.7

» Review Multivariate Normal and Gamma distributions
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