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Outline

Topics

I Gauss-Markov Theorem

I Estimability and Prediction

Readings: Christensen Chapter 2, Chapter 6.3, ( Appendix A, and
Appendix B as needed)



duke.eps

Gauss-Markov Theorem

Theorem
Under the assumptions:

E[Y] = µ

Cov(Y) = σ2In

every estimable function ψ = λTβ has a unique unbiased linear
estimator ψ̂ which has minimum variance in the class of all
unbiased linear estimators. ψ̂ = λT β̂ where β̂ is any set of
ordinary least squares estimators.
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Unique Unbiased Estimator

Lemma

I If ψ = λTβ is estimable, there exists a unique linear unbiased
estimator of ψ = a∗TY with a∗ ∈ C (X).

I If aTY is any unbiased linear estimator of ψ then a∗ is the
projection of a onto C (X), i.e. a∗ = PXa.
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Unique Unbiased Estimator

Proof

I Since ψ is estimable, there exists an a ∈ Rn for which
E[aTY] = λTβ = ψ with λT = aTX

I Let a = a∗ + u where a∗ ∈ C (X) and u ∈ C (X)⊥

I Then

ψ = E[aTY] = E[a∗TY] + E[uTY]

= E[a∗TY] + 0

E[uTY] = uTXβ

since u ⊥ C (X) (i.e. u ∈ C (X)⊥) E[uTY] = 0

I Thus a∗TY is also an unbiased linear estimator of ψ with
a∗ ∈ C (X)
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Uniqueness

Proof.
Suppose that there is another v ∈ C (X) such that E[vTY] = ψ.
Then for all β

0 = E[a∗TY]− E[vTY]

= (a∗ − v)TXβ

So (a∗ − v)TX = 0 for all β

I Implies (a∗ − v) ∈ C (X)⊥

I but by assumption (a∗ − v) ∈ C (X) (C (X) is a vector space)

I the only vector in BOTH is 0, so a∗ = v

Therefore a∗TY is the unique linear unbiased estimator of ψ with
a∗ ∈ C (X).
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Proof of Minimum Variance (G-M)

I Let a∗TY be the unique unbiased linear estimator of ψ with
a∗ ∈ C (X).

I Let aTY be any unbiased estimate of ψ; a = a∗ + u with
a∗ ∈ C (X) and u ∈ C (X)⊥

Var(aTY) = aTCov(Y)a

= σ2‖a‖2

= σ2(‖a∗‖2 + ‖u‖2 + 2a∗Tu)

= σ2(‖a∗‖2 + ‖u‖2) + 0

= Var(a∗TY) + σ2‖u‖2

≥ Var(a∗TY)

with equality if and only if a = a∗

Hence a∗TY is the unique linear unbiased estimator of ψ with
minimum variance ”BLUE” = Best Linear Unbiased Estimator
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Continued

Proof.
Show that ψ̂ = a∗TY = λT β̂

Since a∗ ∈ C (X) we have a∗ = PXa
∗

a∗TY = a∗TPT
XY

= a∗TPxY

= a∗TXβ̂

= λT β̂

for λT = a∗TX or λ = XTa
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MVUE

I Gauss-Markov Theorem says that OLS has minimum variance
in the class of all Linear Unbiased estimators

I Requires just first and second moments

I Additional assumption of normality, OLS = MLEs have
minimum variance out of ALL unbiased estimators (MVUE);
not just linear estimators (requires Completeness and
Rao-Blackwell Theorem - next semester)
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estimator of E [Y | x∗]?

I If one does exist, how do we know that if we are given λ?
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Existence

I x∗β has a unique unbiased estimator if x∗ ≡ λ = XTa

I Clearly if x∗ = xi (ith row of observed data) then it is
estimable with a equal to the vector with a 1 in the ith
position even if X is not full rank!

I What about out of sample prediction?
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Example

x1 = -4:4

x2 = c(-2, 1, -1, 2, 0, 2, -1, 1, -2)

x3 = 3*x1 -2*x2

x4 = x2 - x1 + 4

Y = 1+x1+x2+x3+x4 + c(-.5,.5,.5,-.5,0,.5,-.5,-.5,.5)

dev.set = data.frame(Y, x1, x2, x3, x4)

lm1234 = lm(Y ~ x1 + x2 + x3 + x4, data=dev.set)

round(coefficients(lm1234), 4)

## (Intercept) x1 x2 x3 x4

## 5 3 0 NA NA

lm3412 = lm(Y ~ x3 + x4 + x1 + x2, data = dev.set)

round(coefficients(lm3412), 4)

## (Intercept) x3 x4 x1 x2

## -19 3 6 NA NA
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In Sample Predictions

cbind(dev.set, predict(lm1234), predict(lm3412))

## Y x1 x2 x3 x4 predict(lm1234) predict(lm3412)

## 1 -7.5 -4 -2 -8 6 -7 -7

## 2 -3.5 -3 1 -11 8 -4 -4

## 3 -0.5 -2 -1 -4 5 -1 -1

## 4 1.5 -1 2 -7 7 2 2

## 5 5.0 0 0 0 4 5 5

## 6 8.5 1 2 -1 5 8 8

## 7 10.5 2 -1 8 1 11 11

## 8 13.5 3 1 7 2 14 14

## 9 17.5 4 -2 16 -2 17 17

Both models agree for estimating the mean at the observed X
points!
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Out of Sample

out = data.frame(test.set,

Y1234=predict(lm1234, new=test.set),

Y3412=predict(lm3412, new=test.set))

out

## x1 x2 x3 x4 Y1234 Y3412

## 1 3 1 7 2 14 14

## 2 6 2 14 4 23 47

## 3 6 2 14 0 23 23

## 4 0 0 0 4 5 5

## 5 0 0 0 0 5 -19

## 6 1 2 3 4 8 14

Agreement for cases 1, 3, and 4 only! Can we determine that
without finding the predictions and comparing?



duke.eps

Out of Sample

out = data.frame(test.set,

Y1234=predict(lm1234, new=test.set),

Y3412=predict(lm3412, new=test.set))

out

## x1 x2 x3 x4 Y1234 Y3412

## 1 3 1 7 2 14 14

## 2 6 2 14 4 23 47

## 3 6 2 14 0 23 23

## 4 0 0 0 4 5 5

## 5 0 0 0 0 5 -19

## 6 1 2 3 4 8 14

Agreement for cases 1, 3, and 4 only! Can we determine that
without finding the predictions and comparing?



duke.eps

Determining Estimable λ

I Estimable means that λT = aTX for a ∈ C (X)

I Transpose: λ = XTa for a ∈ C (X)

I λ ∈ C (XT ) (λ ∈ R(X))

I λ ⊥ C (XT )⊥

I C (XT )⊥ is the null space of X

v ⊥ C (XT ) : Xv = 0⇔ v ∈ N(X)

I λ ⊥ N(X)

I if P is a projection onto C (XT ) then I− P is a projection
onto N(X) and therefore (I− P)λ = 0 if λ is estimable

Take PXT = (XTX)(XTX)− as a projection onto C (XT ) and show
(I− PXT )λ = 0p
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Example

library("estimability" )

cbind(epredict(lm1234, test.set), epredict(lm3412, test.set))

## [,1] [,2]

## 1 14 14

## 2 NA NA

## 3 23 23

## 4 5 5

## 5 NA NA

## 6 NA NA

Rows 2, 5, and 6 are not estimable! No linear unbiased estimator
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Summary

I When BLUEs exist, under normality they are MVUE (ditto for
prediction - BLUP)

I BLUE/BLUP do not always for estimation/prediction if X is
not full rank

I may occur with redundancies for modest p < n and of course
p > n

I Eliminate redundancies by removing variables (variable
selection)

I Consider alternative estimators (Bayes and related)
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Other Estimators

What about some estimator g(Y) that is not unbiased?

I Mean Squared Error for estimator g(Y) of λTβ is

E[g(Y)− λTβ]2 = Var(g(Y)) + Bias2(g(Y))

where Bias = E[g(Y)]− λTβ

I Bias vs Variance tradeoff

I Can have smaller MSE if we allow some Bias!
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Bayes

I Next Class Bayes Theorem & Conjugate Normal-Gamma
Prior/Posterior distributions

I Read Chapter 2 in Christensen or Wakefield 5.7

I Review Multivariate Normal and Gamma distributions


