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Coordinates

I Instructor: Merlise Clyde
214A Old Chemistry
Office Hours: TBA

I Teaching Assistants: Isaac Lavine

I Course: Theory and Application of linear models from both a
frequentist (classical) and Bayesian perspective

I Prerequisites: linear algebra and a mathematical statistics
course covering likelihoods and distribution theory (normal, t,
F, chi-square, gamma distributions)

I Introduce R programming as needed

I Introduce Bayesian methods, but assume that you are
co-registered in 601 or have taken it previously

I more info on Course Website
http://stat.duke.edu/courses/Fall17/sta721

http://stat.duke.edu/courses/Fall17/sta721


Introduction

Build “regression” models that relate a response variable to a
collection of covariates

I Goals of Analysis?
I Predictive models
I Causal interpretation
I Testing of hypotheses
I confirmatory or validation analyses

I Observational versus Experimental data? (Confounding)

I Sampling Schemes Generalizibility

I Statistical Theory
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Simple Linear Regression

Simple Linear Regression:

yi = β0 + β1xi + εi for i = 1, . . . , n

Rewrite in vectors:

 y1
...
yn

 =

 1
...
1

β0 +

 x1
...
xn

β1 +

 ε1
...
εn


 y1

...
yn

 =

 1 x1
...

...
1 xn

[ β0
β1

]
+

 ε1
...
εn


Y = Xβ + ε



Multiple Regression

yi = β0 + β1x1i + β2x2i + . . . βpxpi + εi

Design matrix

X =

1 x11 . . . xp1
1 x12 . . . xp2
...

...
...

...
1 x1n . . . xpn

Y = Xβ + ε

what should go into X and do we need all columns of X for
inference about Y?



Nonlinear Models

Regression function may be an intrinsically nonlinear function of t

E[Yi ] = f (ti ,θ)
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Quadratic Linear Regression
Taylor’s Theorem:

f (ti ,θ) = f (t0,θ) + (ti − t0)f ′(t0,θ) + (ti − t0)2
f ′′(t0,θ)

2
+R(ti ,θ)

yi = β0 + β1xi + β2x
2
i + εi for i = 1, . . . , n

Rewrite in vectors:

 y1
...
yn

 =

 1 x1 x21
...

...
1 xn x2n


 β0
β1
β2

+

 ε1
...
εn


Y = Xβ + ε

Quadratic in x , but linear in β’s, but remainder term is in errors ε



Polynomial Linear Regression

Polynomial Regression:

yi =

q∑
j=0

βjx
j
i + εi for i = 1, . . . , n

Rewrite in vector notation:

 y1
...
yn

 =

 1 x1 x21 . . . xq1
...

...
1 xn x2n . . . xqn



β0
β1
β2
...
βq

+

 ε1
...
εn



Y = Xβ + ε

How large should q be?
Use Nonlinear Regression or other Nonparametric models



Kernel Regression

Kernel Regression:

yi = β0 +
J∑

j=1

βje
−λ(xi−kj )d + εi for i = 1, . . . , n

where kj are kernel locations and λ is a smoothing parameter

 y1
...
yn

 =

 1 e−λ(x1−k1)
d

. . . e−λ(x1−kJ)
d

...
...

...

1 e−λ(xn−k1)
d

. . . e−λ(xn−kJ)
d



β0
β1
...
βJ

+

 ε1
...
εn


Y = Xβ + ε

Linear in β given λ
Learn λ and J



Kernel Regression Example
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Hierarchical Models - Spinal Bone Density
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Generic Linear Model
Generic Model in Matrix Notation is

Y = Xβ + ε

I Y (n × 1) vector of response (observe)

I X (n × p) design matrix (observe)

I β (p × 1) vector of coefficients (unknown)

I ε (n × 1) vector of “errors” (unobservable)

Goals:

I What goes into X? (model building and model selection)

I What if several models are equally good? (model averaging or
ensembles)

I What about the future? (Prediction)

I uncertainty quantification - assumptions about ε

All models are wrong, but some may be useful (George Box)



Ordinary Least Squares

Goal: Find the best fitting “line” or “hyper-plane” that minimizes∑
i

(Yi − xTi β)2 = (Y − Xβ)T (Y − Xβ) = ‖Y − Xβ‖2

I Optimization problem

I May over-fit ⇒ add other criteria that provide a penalty
“Penalized Least Squares”

I Robustness to extreme points ⇒ replace quadratic loss with
other functions

I no notion of uncertainty of estimates

I no structure of problem (repeated measures on individual,
randomization restrictions, etc)

Need Distribution Assumptions of Y (or ε) for testing and
uncertainty measures ⇒ Likelihood and Bayesian inference



Philosophy

I for many problems frequentist and Bayesian methods will give
similar answers (more a matter of taste in interpretation)

I For small problems, Bayesian methods allow us to incorporate
prior information which provides better calibrated answers

I for problems with complex designs and/or missing data
Bayesian methods are often easier to implement (do not need
to rely on asymptotics)

I For problems involving hypothesis testing or model selection
frequentist and Bayesian methods can be strikingly different.

I Frequentist methods often faster (particularly with “big
data”) so great for exploratory analysis and for building a
“data-sense”

I Bayesian methods sit on top of Frequentist Likelihood

Important to understand advantages and problems of each
perspective!
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