Introduction to Linear Models

STAT721 Linear Models Duke University
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August 29, 2017



Coordinates

» Instructor: Merlise Clyde
214A Old Chemistry
Office Hours: TBA

» Teaching Assistants: lsaac Lavine

» Course: Theory and Application of linear models from both a
frequentist (classical) and Bayesian perspective

» Prerequisites: linear algebra and a mathematical statistics
course covering likelihoods and distribution theory (normal, t,
F, chi-square, gamma distributions)

» Introduce R programming as needed

» Introduce Bayesian methods, but assume that you are
co-registered in 601 or have taken it previously

» more info on Course Website
http://stat.duke.edu/courses/Falll7/sta721


http://stat.duke.edu/courses/Fall17/sta721

Introduction

Build “regression” models that relate a response variable to a
collection of covariates
» Goals of Analysis?
> Predictive models
Causal interpretation

Testing of hypotheses
confirmatory or validation analyses

v vy

> Observational versus Experimental data? (Confounding)
» Sampling Schemes Generalizibility
» Statistical Theory



Prostate Example
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Simple Linear Regression

Simple Linear Regression:

yi=PBo+ pixi+e fori=1,...,n

Rewrite in vectors:

" 1 X1

S| = Bot+ | P | Bt
| Yn | 1 Xn
[ 1 ]| 1 x

. [ Bo } n

' B1
BZu 1 x,

€1



Multiple Regression

yi = Bo + Bix1i + Baxai + ... BpXpi + €

Design matrix

1 x11 ... Xp1
X 1 x0 ... Xp2

1 Xip e Xpn

Y=X3+¢

what should go into X and do we need all columns of X for
inference about Y7



Nonlinear Models

Regression function may be an intrinsically nonlinear function of t

E[Y]] = f(t;,0)
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Quadratic Linear Regression
Taylor's Theorem:

f(l’,’, 9) = f(t(), 9) —+ (t,' — to)f/(to, 9) + (t,' - t())zf//(tzo’e) + R(t,', 0)

y,-:ﬁo—|—ﬂlx,-+ﬁgxi2+e,~ fori=1,...,n

Rewrite in vectors:

341 1 xq x¢ Bo €1
= B |+
Yn 1 x, x,% B2 €n
Y = X3+ e

Quaderatic in x, but linear in 3’'s, but remainder term is in errors €



Polynomial Linear Regression

Polynomial Regression:

q
yi:Zﬁjle.+e; fori=1,...,n

Jj=0
Rewrite in vector notation:
2
yi 1 X1 X

Yn 1 x, x;

Y =

How large should g be?

X3+ €

Bo
B1
B2

b

€1

€n

Use Nonlinear Regression or other Nonparametric models



Kernel Regression

Kernel Regression:

J
yi=Po+ Zﬁje"\(x"_kf)d +efori=1,...,n
j=1

where k; are kernel locations and X is a smoothing parameter

A(xi—k))? Bo

1 e‘A(Xl_kl)d ... € €
ol N | By !
Yo 1 e ak)? e Ak || n
By
Y = X3+ e

Linear in 3 given A
Learn A\ and J



Kernel Regression Example
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Hierarchical Models - Spinal Bone Density

Spinal Bone Marrow Density
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Generic Linear Model
Generic Model in Matrix Notation is

Y=XB+¢€

v

Y (n x 1) vector of response (observe)
» X (n x p) design matrix (observe)
» 3 (p x 1) vector of coefficients (unknown)
» € (n x 1) vector of “errors” (unobservable)
Goals:
» What goes into X? (model building and model selection)

» What if several models are equally good? (model averaging or
ensembles)

» What about the future? (Prediction)
> uncertainty quantification - assumptions about €

All models are wrong, but some may be useful (George Box)



Ordinary Least Squares

Goal: Find the best fitting “line” or “hyper-plane” that minimizes

DY —x B = (Y =XB)T(Y - XB) = |Y — XB|?

i

» Optimization problem

» May over-fit = add other criteria that provide a penalty
“Penalized Least Squares”

» Robustness to extreme points = replace quadratic loss with
other functions

» no notion of uncertainty of estimates
» no structure of problem (repeated measures on individual,
randomization restrictions, etc)

Need Distribution Assumptions of Y (or €) for testing and
uncertainty measures = Likelihood and Bayesian inference



Philosophy

>

for many problems frequentist and Bayesian methods will give
similar answers (more a matter of taste in interpretation)

For small problems, Bayesian methods allow us to incorporate
prior information which provides better calibrated answers

for problems with complex designs and/or missing data
Bayesian methods are often easier to implement (do not need
to rely on asymptotics)

For problems involving hypothesis testing or model selection
frequentist and Bayesian methods can be strikingly different.

Frequentist methods often faster (particularly with “big
data") so great for exploratory analysis and for building a
“data-sense”

Bayesian methods sit on top of Frequentist Likelihood

Important to understand advantages and problems of each
perspective!



	Coordinates
	Course Overview

