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Topics

v

Variable Selection / Model Choice
» Stepwise Methods

Model Selection Criteria

v

v

Model Averaging



Variable Selection

Reasons for reducing the number of variables in the model:
» Philosophical
» Avoid the use of redundant variables (problems with
interpretations)
» KISS
» Occam’s Razor
> Practical

> Inclusion of un-necessary terms yields less precise estimates,
particularly if explanatory variables are highly correlated with
each other

> it is too “expensive”’ to use all variables



Variable Selection Procedures

v

Stepwise Regression: Forward, Stepwise, Backward —
add/delete variables until all t-statistics are significant (easy,
but not recommended)

Select variables with non-zero coefficients from Lasso

v

v

Select variables where shrinkage coefficient less than 0.5

v

Use a Model Selection Criterion to pick the “best” model
R2 (picks largest model)

Adjusted R2

Mallow's Cp C, = (SSE/6%,) + 2pm — n

AIC (Akaike Information Criterion) proportional to Cp for
linear models

» BIC(m) (Bayes Information Criterion) &2, + log(n)pm

v

v vVvYyy

Trade off model complexity (number of coefficients p,,) with
goodness of fit ( 52,)



Model Selection

Selection of a single model has the following problems

» When the criteria suggest that several models are equally
good, what should we report? Still pick only one model?

» What do we report for our uncertainty after selecting a model?

Typical analysis ignores model uncertainty!

Winner's Curse



Bayesian Model Choice

» Models for the variable selection problem are based on a
subset of the Xy, ... X, variables

» Encode models with a vector v = (71, ...7p) where
7vj € {0,1} is an indicator for whether variable X; should be
included in the model M,. v =0« 3; =0

» Each value of ~ represents one of the 2P models.
» Under model M,:

Y ’ 16a0—277 ~ N(X’Vﬁfwo—zl)

Where X, is design matrix using the columns in X where
7 =1 and 3, is the subset of 3 that are non-zero.



Bayesian Model Averaging
Rather than use a single model, BMA uses all (or potentially a lot)
models, but weights model predictions by their posterior
probabilities (measure of how much each model is supported by
the data)

» Posterior model probabilities
p(Y | M;)p(M;)
> P(Y [ M;)p(M;)

Marginal likelihod of a model is proportional to

p(Y 136) = [ [ p(Y 1 B,.0%p(8, | 7.02)p(0? | 7)dB dor

p(M; [ Y) =

» Probability 3; # 0: ZMJ:BJ;«&O p(M; | Y) (marginal inclusion
probability)
» Predictions
VoY = 3 v 1Y) i
J



Prior Distributions

» Bayesian Model choice requires proper prior distributions on
parameters that are not common across models

» Vague but proper priors may lead to paradoxes!

» Conjugate Normal-Gammas lead to closed form expressions
for marginal likelihoods, Zellner's g-prior is the most popular.



Zellner's g-prior
Centered model:
Y=1,a+XB+e¢
where X€ is the centered design matrix where all variables have
had their mean subtracted X = (I — P1,)X
» p(a) x 1
> p(0?) x 1/0?
> B, | a,0%,v ~ N(0,go?(X“X) 1)
which leads to marginal likelihood of M, that is proportional to

=)

p(Y | M) = C(L+g) 7 (1+g(1- R2)~"

where R? is the usual R? for model M, and C is the marginal
distribution under the null model.
Trade-off of model complexity versus goodness of fit

Lastly, assign prior distribution to space of models (Uniform, or
Beta-binomial on model size)



USair Data

library (BAS)
poll.bma = bas.lm(log(S02) ~ temp + log(mgfirms) +
log(popn) + wind +
precip+ raindays,
data=pollution,
prior="g-prior",
alpha=41, # g =n
modelprior=uniform(), # beta.binomial(1l
n.models=2"6,
update=50,
initprobs="Uniform")

par (mfrow=c(2,2))
plot(poll.bma, ask=F)



Plots

Model Probabilities

Residuals vs Fitted
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Inclusion Probabilities
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Posterior Distribution with Uniform Prior on Model Space

image(poll.bma)
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Posterior Distribution with BB(1,p) Prior on Model Space

image(poll-bb.bma)
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Jeffreys Scale of Evidence

B = BF[H, : B,]
Bayes Factor | Interpretation
B > 1 | Hy supported
1>B> 10_% minimal evidence against Hy
1072 > B > 107! | substantial evidence against Hg
107! > B > 1072 | strong evidence against Hy
1072 > B | decisive evidence against Hy

in context of testing one hypothesis with equal prior odds




Coefficients

beta = coef(poll.bma)
par(mfrow=c(2,3)); plot(beta, subset=2:7,ask=F)
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Problem with g Prior

The Bayes factor for comparing M, to the null model:

BF(M, : Mp) = (1+ g) " 1P/2(1 4 g(1 — R2))~ (12

v

Let g be a fixed constant and take n fixed.

> Let F = % usual F statistic for comparing
model M, to My

» As R2 — 1, F — oo LR test would reject Hy

» But BF remains bounded (contradiction)

> introduce prior on g - mixtures of g priors

> Jeffreys Zellner-Siow " JZS" Cauchy

1/g ~ G(1/2,n/2)



Mortality & Pollution

» Data from Statistical Sleuth 12.17

> 60 cities

> response Mortality

» measures of HC, NOX, SO2

> Is pollution associated with mortality after adjusting for other
socio-economic and meteorological factors?

» 15 predictor variables implies 2% = 32,768 possible models

» Use Zellner-Siow Cauchy prior 1/g ~ G(1/2,n/2)

mort.bma = bas.lm(MORTALITY ~ ., data=mortality,
prior="ZS-null",
alpha=60, n.models=2"15,
update=100, initprobs="eplogp")



Posterior Distributions

Model Dimension

—— |zosbor
L XONBO|
OHbo)
g g 8 —
2 ] = —— [l0031um
= N 5 3 SNUMUON
9 - et s Aisuaq
Q o £ <) ——— |punos
[ LS § o onp3
o 5 2 < asnoH
[T} [} o
3 L S o — |s95en0
] = = ——— |dwayAinp
= ] 2 dwayuer
I~ W - —— | Aupiuny
dioald
ensemmes - O 1daoua
0T 80 90 ¥0 20 00 0T 80 90 ¥0 20 00
Auiigeqoid aaneinwny Aungeqoid uoisnjou feuibrely
o 5
o Q ®00 on =]
-3 [
° ° < oamamm—
m 8 o = 2 - C——
E ° Fg 2 ] i —
D = L o
0 k=] © C———— S
> o m m " O
© 2 F2 9 S
T 3 . & 2 Q| ——cc
> ° B S D | m—
e 8 o ——
0 L8 5 M
i 1= o s 0 SO (— L)
o ° a 00 enEE———————
o o L g o®00m om cummcmm—"e
© o ° @omw
o o
T T T T 1 T T T T T 1
00T 05 0 05— 00T- Gz 02 ST 0T § 0 S
sfenpisay (reuibrey)6o|



Posterior Probabilities

>

What is the probability that there is no pollution effect?

» Sum posterior model probabilities over all models that include

vV vV vV Vv Y

v

at least one pollution variable

> which.mat = list2matrix.which(mort.bma,1:(2°15))
> poll.in = (which.mat[, 14:16] %x% rep(1, 3)) > 0
> sum(poll.in * mort.bma$postprob)

[1] 0.9889641

Posterior probability no effect is 0.011

Odds that there is an effect (1 —.011)/(.011) = 89.9
Prior Odds 7 = (1 — .53)/.53

Bayes Factor for a pollution effect 89.9/7 = 12.8

Bayes Factor for NOXEffect based on marginal inclusion
probability 0.917/(1 — 0.917) = 11.0

Marginal inclusion probability for logHC = 0.4271; BF = 0.75

» Marginal inclusion probability for logSO2 = 0.2189; BF = 0.28

Note Bayes Factors are not additive!
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Coefficients

Intercept Precip Humidity JanTemp
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Coefficients

Sound Density NonWhite WhiteCol
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Effect Estimation

» Coefficients in each model are adjusted for other variables in
the model

» OLS: leave out a predictor with a non-zero coefficient then
estimates are biased!

» Model Selection in the presence of high correlation, may leave
out "redundant” variables;

» improved MSE for prediction (Bias-variance tradeoff)
» Bayes is biased anyway so should we care?
» What is meaning of >__ 8j57;P(M, | Y)

Problem with confounding! Need to change prior?



Challenges

» Computational if p > 35 enumeration is difficult

Gibbs sampler or Random-Walk algorithm on ~

slow convergence/mixing with high correlations

Metropolis Hastings algorithms more flexibility

"Stochastic Search” (no guarantee samples represent posterior)
in BMA all variables are included, but coefficients are shrunk
to 0; alternative is to use Shrinkage methods

vV vy vy VvYyy

» Prior Choice: Choice of prior distributions on 3 and on ~

Model averaging versus Model Selection — what are objectives?
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