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Outline

I Multivariate Normal Distribution

I Linear Transformations

I Distribution of estimates under normality
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Properties of MLE’s Recap

I Ŷ = µ̂ = PXY is an unbiased estimate of µ = Xβ

I E[e] = 0 if µ ∈ C (X)

E[e] = E[(I− PX)Y]

I MLE of σ2:

σ̂2 =
eTe

n
=

YT (I− PX)Y

n

Is not an unbiased estimate of σ2, but

σ̂2 ≡ eTe

n − p
=

YT (I− PX)Y

n − p

where p equals the rank of X is an unbiased estimate.
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Sampling Distributions

I Distribution of β̂

I Distribution of PXY

I Distribution of e
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Univariate Normal

Definition
We say that Z has a standard Normal distribution

Z ∼ N(0, 1)

with mean 0 and variance 1 if it has density

fZ (z) =
1√
2π

e−
1
2
z2

If Y = µ+ σZ then Y ∼ N(µ, σ2) with mean µ and variance σ2

fY (y) =
1√

2πσ2
e−

1
2( z−µ

σ )
2
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Standard Multivariate Normal

Let zi
iid∼ N(0, 1) for i = 1, . . . , d and define

Z ≡


z1
z2
...
zd


I Density of Z :

fZ(z) =
∏d

j=1
1√
2π
e−z

2
i /2

= (2π)−d/2e−
1
2
(ZT Z)

I E[Z] = 0 and Cov[Z] = Id
I Z ∼ N(0d , Id)
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Multivariate Normal

For a d dimensional multivariate normal random vector, we write
Y ∼ Nd(µ,Σ)

I E[Y] = µ: d dimensional vector with means E [Yj ]

I Cov[Y] = Σ: d × d matrix with diagonal elements that are
the variances of Yj and off diagonal elements that are the
covariances E[(Yj − µj)(Yk − µk)]

Density

If Σ is positive definite (x′Σx > 0 for any x 6= 0 in Rd) then Y has
a density 1

p(Y) = (2π)−d/2|Σ|−1/2 exp(−1

2
(Y − µ)TΣ−1(Y − µ))

1with respect to Lebesgue measure on Rd
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Spectral Theorem

Theorem
If A (n × n) is a symmetric real matrix then there exists a U
(n× n) such that UTU = UUT = In and a diagonal matrix Λ with
elements λi such that A = UΛUT

I U is an orthogonal matrix; U−1 = UT

I The columns of U from an Orthonormal Basis for Rn

I rank of A equals the number of non-zero eigenvalues λi
I Columns of U associated with non-zero eigenvalues form an

ONB for C (A) (eigenvectors of A)

I Ap = UΛpUT (matrix powers)

I a (symmetric) square root of A > 0 is UΛ1/2UT
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Multivariate Normal Density

I Density of Z ∼ N(0, Id):

fZ(z) =
∏d

j=1
1√
2π
e−z

2
i /2

= (2π)−d/2e−
1
2
(ZT Z)

I Write Y = µ + AZ

I Solve for Z = g(Y)

I Jacobian of the transformation J(Z→ Y) = | ∂g∂Y |
I substitute g(Y) for Z in density and multiply by Jacobian

fY(y) = fZ(z)J(Z→ Y)
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Multivariate Normal Density

Y = µ + AZ for Z ∼ N(0, Id) (1)

Proof.

I since Σ > 0, ∃ by the spectral theorem an A (d × d) such
that A > 0 and AAT = Σ

I A > 0⇒ A−1 exists

I Multiply both sides (1) by A−1:

A−1Y = A−1µ + A−1AZ

I Rearrange A−1(Y − µ) = Z

I Jacobian of transformation dZ = |A−1|dY

I Substitute and simplify algebra

f (Y) = (2π)−d/2|Σ|−1/2 exp(−1

2
(Y − µ)TΣ−1(Y − µ))
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Singular Case

Y = µ + AZ with Z ∈ Rd and A is n × d

I E[Y] = µ

I Cov(Y) = AAT ≥ 0

I Y ∼ N(µ,Σ) where Σ = AAT

If Σ is singular then there is no density (on Rn), but claim that Y
still has a multivariate normal distribution!

Definition
Y ∈ Rn has a multivariate normal distribution N(µ,Σ) if for any
v ∈ Rn vTY has a normal distribution with mean vTµ and
variance vTΣv

see linked videos using characteristic functions:

Y ∼ N(µ, σ2)⇔ ϕy (t) ≡ E[e itY ] = e itµ−t
2σ2/2
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Linear Transformations are Normal

If Y ∼ Nn(µ,Σ) then for A m × n

AY ∼ Nm(Aµ,AΣAT )

AΣAT does not have to be positive definite!
(Proof in book or linked video)
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Distribution of Ŷ and e (marginally)
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Equal in Distribution

Multiple ways to define the same normal:

I Z1 ∼ N(0, In), Z1 ∈ Rn and take A d × n

I Z2 ∼ N(0, Ip), Z2 ∈ Rp and take B d × p

I Define Y = µ + AZ1

I Define W = µ + BZ2

Theorem
If Y = µ + AZ1 and W = µ + BZ2 then Y

D
= W if and only if

AAT = BBT = Σ

see linked video



duke.eps

Zero Correlation and Independence

Theorem
For a random vector Y ∼ N(µ,Σ) partitioned as

Y =

[
Y1

Y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
then Cov(Y1,Y2) = Σ12 = ΣT

21 = 0 if and only if Y1 and Y2 are
independent.
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Independence Implies Zero Covariance

Proof.

Cov(Y1,Y2) = E[(Y1 − µ1)(Y2 − µ2)T ]

If Y1 and Y2 are independent

E[(Y1 − µ1)(Y2 − µ2)T ] = E[(Y1 − µ1)E(Y2 − µ2)T ] = 00T = 0

therefore Σ12 = 0
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Zero Covariance Implies Independence

Assume Σ12 = 0

Proof

I Choose an

A =

[
A1 0
0 A2

]
such that A1AT

1 = Σ11, A2AT
2 = Σ22

I Partition

Z =

[
Z1

Z2

]
∼ N

([
01

02

]
,

[
I1 0
0 I2

])
and µ =

[
µ1

µ2

]

I then Y
D
= AZ + µ ∼ N(µ,Σ)
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Continued

Proof.

I [
Y1

Y2

]
D
=

[
A1Z1 + µ1

A2Z2 + µ2

]
I But Z1 and Z2 are independent

I Functions of Z1 and Z2 are independent

I Therefore Y1 and Y2 are independent

For Multivariate Normal Zero Covariance implies independence
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Corollary

Corollary

If Y ∼ N(µ, σ2In) and ABT = 0 then AY and BY are
independent.

Proof.

I [
W1

W2

]
=

[
A
B

]
Y =

[
AY
BY

]
I Cov(W1,W2) = Cov(AY,BY) = σ2ABT

I AY and BY are independent if ABT = 0
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Joint Distribution of Ŷ and e
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More Distribution Theory

Distributions unconditional on σ2

I χ2 distributions (σ̂2)

I t distribution (Ŷ, e, β̂)
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