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Outline

» Multivariate Normal Distribution
» Linear Transformations

» Distribution of estimates under normality
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Properties of MLE's Recap

» Y = [t = PxY is an unbiased estimate of u = X3
» Ele] =0 if p € C(X)
Ele] = E[(I - Px)Y]

» MLE of ¢2:
52 ele B YT(I - Px)Y

n n
Is not an unbiased estimate of o2, but
e’le YT(1-Px)Y

2 p—
n—p n—p

o

where p equals the rank of X is an unbiased estimate.



Sampling Distributions

» Distribution of 3
» Distribution of PxY
» Distribution of e
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Univariate Normal

Definition
We say that Z has a standard Normal distribution
Z ~ N(0,1)

with mean 0 and variance 1 if it has density

1 12
f2(z) = —=e"2*
Z( ) \/ﬂ
If Y =p+o0Z then Y ~ N(u,0?) with mean p and variance o2
1 suy?
fy(y) = e=2 (")

V22



Standard Multivariate Normal
Let z; i N(0,1) for i =1,...,d and define

21
22

N
Il

Zd

> Density of Z:

d 72
fz(z) = jzl\/%;e P2

— (QW)—d/zef%(ZTZ)

» E[Z] =0 and Cov[Z] = I4
> Z -~ N(Od, Id)



Multivariate Normal

For a d dimensional multivariate normal random vector, we write
Y ~ Nd(“: Z)
» E[Y] = p: d dimensional vector with means E[Y/]

» Cov[Y] = X: d x d matrix with diagonal elements that are
the variances of Y; and off diagonal elements that are the
covariances E[(Y; — pj)( Yk — k)]

Density

If X is positive definite (x'Xx > 0 for any x # 0 in R9) then Y has
a density !

p(Y) = (2m) || 2 exp(— (Y — ) TE XY — )

lwith respect to Lebesgue measure on RY



Spectral Theorem

Theorem

If A (n x n) is a symmetric real matrix then there exists a U

(n x n) such that UTU = UUT =1, and a diagonal matrix N with
elements \; such that A = UAUT

» U is an orthogonal matrix; U1 = UT

v

The columns of U from an Orthonormal Basis for R”

v

rank of A equals the number of non-zero eigenvalues \;

v

Columns of U associated with non-zero eigenvalues form an
ONB for C(A) (eigenvectors of A)

AP = UNPUT (matrix powers)
a (symmetric) square root of A > 0 is UAY/2UT

v

v



Multivariate Normal Density

v

Density of Z ~ N(0, 1,):
_22
fo(2) =TI e

— (27r)_d/2e_%(ZTZ)

v

Write Y = u+ AZ
Solve for Z = g(Y)
Jacobian of the transformation J(Z — Y) = ’%g(

v

v

v

substitute g(Y) for Z in density and multiply by Jacobian

f(y) = 2(2)J(Z = Y)



Multivariate Normal Density

Y=p+AZ forZ~ N(0,1,) (1)
Proof.

> since X > 0, 3 by the spectral theorem an A (d x d) such
that A>0and AAT =X
A > 0= A1l exists

Multiply both sides (1) by A~L:

v

v

AlYY=Alp+AlAZ

v

Rearrange A~Y(Y —u) =Z
Jacobian of transformation dZ = |[A~1|dY
Substitute and simplify algebra

v

v

FY) = (2r) (5] el 5 (Y — )Y — )
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Singular Case

Y=p+AZwithZcRyand Aisnxd

> E[Y] =

» Cov(Y)=AAT >0

> Y ~ N(u, X) where ¥ = AAT
If X is singular then there is no density (on R"), but claim that Y
still has a multivariate normal distribution!

Definition

Y € R” has a multivariate normal distribution N(u, X) if for any
v € R” vTY has a normal distribution with mean v’y and
variance v/ Xv

see linked videos using characteristic functions:

Y ~ N, 0%) gy () = E[e"Y] = e t/2



Linear Transformations are Normal

If Y ~ N,(p, X) then for A mx n

AY ~ N, (Ap,AZAT)

AXAT does not have to be positive definite!
(Proof in book or linked video)



Distribution of ¥ and e (marginally)



Equal in Distribution

Multiple ways to define the same normal:

» Z; ~N(0,1,), Z; € R" and take A d x n
» Zy ~ N(0,1,), Z, € RP and take B d x p
» Define Y = u+ AZ;
> Define W = pu + BZ,

Theorem
IFY = pu+ AZ1 and W = p + BZ, then Y 2 W if and only if
AAT =BBT =%

see linked video



Zero Correlation and Independence

Theorem
For a random vector Y ~ N(u,X) partitioned as

Y My } [ 251 Xpp })
Y = ~ N ,
[ Y2 } ([ 7% 35 X
then Cov(Y1,Y2) =X1p = Z2Tl =0 ifand only if Y1 and Y are
independent.



Independence Implies Zero Covariance

Proof.

Cov(Y1,Ya) = E[(Y1 — 1) (Y2 — 1) ]
If Y1 and Y, are independent

E[(Y1 — py)(Y2 — Hz)T] = E[(Y1 — pp)E(Y2 — N2)T] =007 =0

therefore X1, =0
L]
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Zero Covariance Implies Independence

Assume X1, =0

Proof
» Choose an 0
_ | A
S
such that AlAir =X, A2A2T =29

» Partition

2] en((8] [ 8]) - [2]

> then Y 2 AZ + p1 ~ N(p, X)



Continued

Proof.

Y1 | D | AiZy+py
Y2 ArZ> + iy

» But Z; and Z, are independent
» Functions of Z; and Z, are independent
» Therefore Y1 and Y5 are independent
]

For Multivariate Normal Zero Covariance implies independence



Corollary

Corollary

IFY ~ N(u,021,) and ABT = 0 then AY and BY are
independent.

Proof.

>
w;, | | A Y — AY
W, | | B - | BY
» Cov(Wi, W) = Cov(AY,BY) = ¢?AB"
> AY and BY are independent if ABT =0



Joint Distribution of Y and e



More Distribution Theory

Distributions unconditional on o2

» x? distributions (52)
» t distribution (? e, B)
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