Multivariate Normal Theory

STA721 Linear Models Duke University

Merlise Clyde

September 5, 2017

Outline

- Multivariate Normal Distribution
- Linear Transformations
- Distribution of estimates under normality

Properties of MLE's Recap

Ŷ = µ̂ = P_XY is an unbiased estimate of µ = Xβ
E[e] = 0 if µ ∈ C(X)

$$\mathsf{E}[\mathbf{e}] = \mathsf{E}[(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}]$$

► MLE of σ^2 : $\hat{\sigma}^2 = \frac{\mathbf{e}^T \mathbf{e}}{n} = \frac{\mathbf{Y}^T (\mathbf{I} - \mathbf{P}_{\mathbf{X}}) \mathbf{Y}}{n}$ Is not an unbiased estimate of σ^2 , but $\hat{\sigma}^2 = \frac{\mathbf{e}^T \mathbf{e}}{n} - \frac{\mathbf{Y}^T (\mathbf{I} - \mathbf{P}_{\mathbf{X}}) \mathbf{Y}}{n}$

$$r^2 \equiv \frac{r^2}{n-p} = \frac{r^2}{n-p}$$

where p equals the rank of **X** is an unbiased estimate.

Sampling Distributions

- Distribution of $\hat{oldsymbol{eta}}$
- Distribution of $P_X Y$
- Distribution of e

Univariate Normal

Definition We say that Z has a standard Normal distribution

 $Z \sim N(0,1)$

with mean 0 and variance 1 if it has density

$$f_Z(z)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$$

If $\textbf{Y}=\mu+\sigma \textbf{Z}$ then $\textbf{Y}\sim \textit{N}(\mu,\sigma^2)$ with mean μ and variance σ^2

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2}$$

Standard Multivariate Normal

Let $z_i \stackrel{\text{iid}}{\sim} N(0,1)$ for $i = 1, \ldots, d$ and define

$$\mathbf{Z} \equiv \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_d \end{bmatrix}$$

Density of *Z*:

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2} \\ = (2\pi)^{-d/2} e^{-\frac{1}{2}(\mathbf{Z}^T \mathbf{Z})}$$

•
$$E[Z] = 0$$
 and $Cov[Z] = I_d$
• $Z \sim N(0_d, I_d)$

Multivariate Normal

For a d dimensional multivariate normal random vector, we write $\mathbf{Y} \sim N_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

- $E[\mathbf{Y}] = \mu$: *d* dimensional vector with means $E[Y_j]$
- Cov[Y] = Σ: d × d matrix with diagonal elements that are the variances of Y_j and off diagonal elements that are the covariances E[(Y_j − μ_j)(Y_k − μ_k)]

Density

If $\pmb{\Sigma}$ is positive definite $(\pmb{x}'\pmb{\Sigma}\pmb{x}>0$ for any $\pmb{x}\neq 0$ in $\mathbb{R}^d)$ then \pmb{Y} has a density 1

$$p(\mathbf{Y}) = (2\pi)^{-d/2} |\mathbf{\Sigma}|^{-1/2} \exp(-\frac{1}{2} (\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{Y} - \boldsymbol{\mu}))$$

¹with respect to Lebesgue measure on \mathbb{R}^d

Spectral Theorem

Theorem

If **A** $(n \times n)$ is a symmetric real matrix then there exists a **U** $(n \times n)$ such that $\mathbf{U}^T \mathbf{U} = \mathbf{U}\mathbf{U}^T = \mathbf{I}_n$ and a diagonal matrix $\mathbf{\Lambda}$ with elements λ_i such that $\mathbf{A} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^T$

- **U** is an orthogonal matrix; $\mathbf{U}^{-1} = \mathbf{U}^T$
- The columns of **U** from an Orthonormal Basis for \mathbb{R}^n
- rank of **A** equals the number of non-zero eigenvalues λ_i
- Columns of U associated with non-zero eigenvalues form an ONB for C(A) (eigenvectors of A)
- $\mathbf{A}^{p} = \mathbf{U} \mathbf{\Lambda}^{p} \mathbf{U}^{T}$ (matrix powers)
- a (symmetric) square root of $\mathbf{A} > 0$ is $\mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{U}^T$

Multivariate Normal Density

• Density of $Z \sim N(\mathbf{0}, \mathbf{I}_d)$:

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{-z_{i}^{2}/2}$$
$$= (2\pi)^{-d/2} e^{-\frac{1}{2}(\mathbf{Z}^{T}\mathbf{Z})}$$

- Write $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{A}\mathbf{Z}$
- Solve for $\mathbf{Z} = g(\mathbf{Y})$
- ► Jacobian of the transformation $J(\mathbf{Z} \to \mathbf{Y}) = |\frac{\partial g}{\partial \mathbf{Y}}|$
- substitute $g(\mathbf{Y})$ for **Z** in density and multiply by Jacobian

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{Z}}(\mathbf{z})J(\mathbf{Z}
ightarrow \mathbf{Y})$$

Multivariate Normal Density

$$\mathbf{Y} = \boldsymbol{\mu} + \mathbf{A}\mathbf{Z}$$
 for $\mathbf{Z} \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_d)$ (1)

Proof.

- since Σ > 0, ∃ by the spectral theorem an A (d × d) such that A > 0 and AA^T = Σ
- $\mathbf{A} > 0 \Rightarrow \mathbf{A}^{-1}$ exists
- Multiply both sides (1) by A⁻¹:

$$\mathbf{A}^{-1}\mathbf{Y} = \mathbf{A}^{-1}\mathbf{\mu} + \mathbf{A}^{-1}\mathbf{A}\mathbf{Z}$$

- ► Rearrange $\mathbf{A}^{-1}(\mathbf{Y} \boldsymbol{\mu}) = \mathbf{Z}$
- Jacobian of transformation $d\mathbf{Z} = |\mathbf{A}^{-1}| d\mathbf{Y}$
- Substitute and simplify algebra

$$f(\mathbf{Y}) = (2\pi)^{-d/2} |\mathbf{\Sigma}|^{-1/2} \exp(-\frac{1}{2} (\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{Y} - \boldsymbol{\mu}))$$

Singular Case

$$\mathbf{Y} = oldsymbol{\mu} + \mathbf{A}\mathbf{Z}$$
 with $\mathbf{Z} \in \mathbb{R}^d$ and \mathbf{A} is $n imes d$

$$\blacktriangleright \mathsf{E}[\mathsf{Y}] = \mu$$

•
$$Cov(\mathbf{Y}) = \mathbf{A}\mathbf{A}^T \ge 0$$

$$lacksim \mathbf{Y} \sim \mathsf{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$$
 where $oldsymbol{\Sigma} = oldsymbol{\mathsf{A}}oldsymbol{\mathsf{A}}^{\mathsf{T}}$

If Σ is singular then there is no density (on \mathbb{R}^n), but claim that Y still has a multivariate normal distribution!

Definition

 $\mathbf{Y} \in \mathbb{R}^n$ has a multivariate normal distribution $N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ if for any $\mathbf{v} \in \mathbb{R}^n \ \mathbf{v}^T \mathbf{Y}$ has a normal distribution with mean $\mathbf{v}^T \boldsymbol{\mu}$ and variance $\mathbf{v}^T \boldsymbol{\Sigma} \mathbf{v}$

see linked videos using characteristic functions:

$$Y \sim \mathsf{N}(\mu, \sigma^2) \Leftrightarrow \varphi_y(t) \equiv \mathsf{E}[e^{itY}] = e^{it\mu - t^2\sigma^2/2}$$

Linear Transformations are Normal

If $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then for $\mathbf{A} \ m imes n$

$\mathbf{AY} \sim \mathsf{N}_m(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$

 $\mathbf{A} \mathbf{\Sigma} \mathbf{A}^{T}$ does not have to be positive definite! (Proof in book or linked video)

Distribution of $\hat{\mathbf{Y}}$ and \mathbf{e} (marginally)

Equal in Distribution

Multiple ways to define the same normal:

- ▶ $\mathsf{Z}_1 \sim \mathsf{N}(\mathbf{0}, \mathsf{I}_n)$, $\mathsf{Z}_1 \in \mathbb{R}^n$ and take A $d \times n$
- ▶ $Z_2 \sim N(\mathbf{0}, \mathbf{I}_p)$, $Z_2 \in \mathbb{R}^p$ and take \mathbf{B} $d \times p$
- Define $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{A}\mathbf{Z}_1$
- Define $\mathbf{W} = \boldsymbol{\mu} + \mathbf{B}\mathbf{Z}_2$

Theorem

If $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{A}\mathbf{Z}_1$ and $\mathbf{W} = \boldsymbol{\mu} + \mathbf{B}\mathbf{Z}_2$ then $\mathbf{Y} \stackrel{\mathrm{D}}{=} \mathbf{W}$ if and only if $\mathbf{A}\mathbf{A}^T = \mathbf{B}\mathbf{B}^T = \mathbf{\Sigma}$

see linked video

Zero Correlation and Independence

Theorem

For a random vector $\mathbf{Y} \sim \mathit{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ partitioned as

$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix}\right)$$

then $Cov(\mathbf{Y}_1, \mathbf{Y}_2) = \mathbf{\Sigma}_{12} = \mathbf{\Sigma}_{21}^T = \mathbf{0}$ if and only if \mathbf{Y}_1 and \mathbf{Y}_2 are independent.

Independence Implies Zero Covariance

Proof.

$$\mathsf{Cov}(\mathbf{Y}_1, \mathbf{Y}_2) = \mathsf{E}[(\mathbf{Y}_1 - \boldsymbol{\mu}_1)(\mathbf{Y}_2 - \boldsymbol{\mu}_2)^T]$$

If \mathbf{Y}_1 and \mathbf{Y}_2 are independent

$$\mathsf{E}[(\mathbf{Y}_{1} - \boldsymbol{\mu}_{1})(\mathbf{Y}_{2} - \boldsymbol{\mu}_{2})^{T}] = \mathsf{E}[(\mathbf{Y}_{1} - \boldsymbol{\mu}_{1})\mathsf{E}(\mathbf{Y}_{2} - \boldsymbol{\mu}_{2})^{T}] = \mathbf{0}\mathbf{0}^{T} = \mathbf{0}$$

therefore $\pmb{\Sigma}_{12}=\pmb{0}$

Zero Covariance Implies Independence

Assume $\boldsymbol{\Sigma}_{12} = \boldsymbol{0}$

Proof

Choose an

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{bmatrix}$$

such that $\mathbf{A}_1 \mathbf{A}_1^T = \mathbf{\Sigma}_{11}$, $\mathbf{A}_2 \mathbf{A}_2^T = \mathbf{\Sigma}_{22}$

Partition

$$\mathbf{Z} = \left[\begin{array}{c} \mathbf{Z}_1 \\ \mathbf{Z}_2 \end{array} \right] \sim \mathsf{N} \left(\left[\begin{array}{c} \mathbf{0}_1 \\ \mathbf{0}_2 \end{array} \right], \left[\begin{array}{c} \mathbf{I}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_2 \end{array} \right] \right) \text{ and } \boldsymbol{\mu} = \left[\begin{array}{c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array} \right]$$

▶ then $\mathbf{Y} \stackrel{\mathrm{D}}{=} \mathbf{AZ} + \boldsymbol{\mu} \sim \mathsf{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

Continued

Proof.

$$\left[\begin{array}{c} \mathbf{Y}_1\\ \mathbf{Y}_2 \end{array}\right] \stackrel{\mathrm{D}}{=} \left[\begin{array}{c} \mathbf{A}_1 \mathbf{Z}_1 + \boldsymbol{\mu}_1\\ \mathbf{A}_2 \mathbf{Z}_2 + \boldsymbol{\mu}_2 \end{array}\right]$$

- But Z₁ and Z₂ are independent
- Functions of Z₁ and Z₂ are independent
- Therefore Y₁ and Y₂ are independent

For Multivariate Normal Zero Covariance implies independence

Corollary

Corollary If $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ and $\mathbf{AB}^T = \mathbf{0}$ then \mathbf{AY} and \mathbf{BY} are independent.

Proof.

$$\left[\begin{array}{c} \textbf{W}_1\\ \textbf{W}_2 \end{array}\right] = \left[\begin{array}{c} \textbf{A}\\ \textbf{B} \end{array}\right] \textbf{Y} = \left[\begin{array}{c} \textbf{AY}\\ \textbf{BY} \end{array}\right]$$

- $Cov(W_1, W_2) = Cov(AY, BY) = \sigma^2 AB^T$
- AY and BY are independent if $AB^T = 0$

Joint Distribution of $\hat{\boldsymbol{Y}}$ and \boldsymbol{e}

More Distribution Theory

Distributions unconditional on σ^2

- χ^2 distributions ($\hat{\sigma}^2$)
- *t* distribution $(\hat{\mathbf{Y}}, \mathbf{e}, \hat{\boldsymbol{\beta}})$