Predictive Distributions & Properties of MLES Merlise Clyde

STA721 Linear Models

Duke University

September 12, 2017

Outline

Topics

- Predictive Distributions
- OLS/MLES Unbiased Estimation
- Gauss-Markov Theorem (if time)

Readings: Christensen Chapter 2, Chapter 6.3, (Appendix A, and Appendix B as needed)

Prediction

- Predict Y_{*} at x^T_{*} (could be new point or existing point)
 Y_{*} = x^T_{*}β + ϵ_{*}
- E[Y_{*} | x_{*}] = x_{*}^Tβ = μ_{*} minimizes squared error loss for predicting Y_{*} at X_{*}^T

$$E[Y_* - f(\mathbf{x}_*)]^2 = E[Y_* - \mu_* + \mu_* - f(x_*)]^2$$

= $E[Y_* - \mu_*]^2 + E[\mu_* - f(x_*)]^2 + 2E[(Y_* - \mu_*)(\mu_* - f(x_*))]$
 $\geq E[Y_* - \mu_*]^2$

Crossproduct term is 0:

$$\mathsf{E}[\mathsf{E}[(Y_* - \mu_*)(\mu_* - f(x_*)) \mid \mathbf{x}_*]] = \mathsf{E}[\mathbf{0} \cdot (\mu_* - f(x_*))]$$

• equality if $f(x) = E[Y_* \mid \mathbf{x}_*]$, the "best" predictor of Y_*

- MLE of μ_* is $\mathbf{x}_*^T \hat{\boldsymbol{\beta}} = \hat{Y}_*$ (is this unique?)
- OLS Best Linear predictor of Y_{*}
- Under joint Normality of Y, X Best Predictor

Predictive Distribution

Look at

$$Y_* - \hat{Y}_* = \mathbf{x}_*^T \boldsymbol{\beta} - \mathbf{x}_*^T \hat{\boldsymbol{\beta}} + \epsilon_*$$

$$\operatorname{var}(Y - \hat{Y}) = \operatorname{var}(\mathbf{x}_*^{\mathsf{T}} \boldsymbol{eta} - \mathbf{x}_*^{\mathsf{T}} \hat{\boldsymbol{eta}}) + \operatorname{var}(\epsilon_*)$$

Two Sources of variation:

- Variation of estimator around true regression
- Variation of error around true regression

Distribution

Distribution of pivotal quantity

$$\frac{Y_* - \mathbf{x}_*^T \hat{\boldsymbol{\beta}}}{\sqrt{\mathsf{MSE}(1 + \mathbf{x}_*^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_*)}} \sim t(n - p, 0, 1)$$

Number of columns (rank) of X is p

 $(1-\alpha)$ 100 % Prediction Interval

$$\mathbf{x}_{*}^{\mathcal{T}} \hat{oldsymbol{eta}} \pm t_{lpha/2} \sqrt{\mathsf{MSE}(1 + \mathbf{x}_{*}(\mathbf{X}^{\mathcal{T}} \mathbf{X})^{-1} \mathbf{x}_{*}^{\mathcal{T}})}$$

Models & MLEs

- ▶ $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in C(\mathbf{X}) \Leftrightarrow \boldsymbol{\mu} = \mathbf{X} \boldsymbol{\beta}$
- Maximum Likelihood Estimator (MLE) of µ is P_XY
- ▶ P_X is the orthogonal projection operator on the column space of X; e.g. X full rank P_X = X(X^TX)⁻¹X^T
- If $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is not invertible use a generalized inverse

A generalize inverse of A: A^- satisfies $AA^-A = A$

Lemma (B.43)

If **G** and **H** are generalized inverses of $(\mathbf{X}^T \mathbf{X})$ then

- 1. $\mathbf{X}\mathbf{G}\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{X}\mathbf{H}\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{X}$
- 2. $\mathbf{X}\mathbf{G}\mathbf{X}^T = \mathbf{X}\mathbf{H}\mathbf{X}^T$

 $\mathbf{P}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-}\mathbf{X}^{T}$ is the orthogonal projection operator onto $C(\mathbf{X})$ (does not depend on choice of generalized inverse!) [See proof in Theorem B.44]

Generalize Inverses

A generalize inverse of A: A^- satisfies $AA^-A = A$ Special Case: Moore-Penrose Generalized Inverse

- Decompose symmetric $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$
- $\bullet \mathbf{A}_{MP}^{-} = \mathbf{U}\mathbf{\Lambda}^{-}\mathbf{U}^{T}$
- Λ^- is diagonal with

$$\lambda_i^- = \begin{cases} 1/\lambda_i \text{ if } \lambda_i \neq 0\\ 0 \text{ if } \lambda_i = 0 \end{cases}$$

- Symmetric $\mathbf{A}_{MP}^- = (\mathbf{A}_{MP}^-)^T$
- Reflexive $\mathbf{A}_{MP}^{-}\mathbf{A}\mathbf{A}_{MP}^{-} = \mathbf{A}_{MP}^{-}$

If ${\bf P}$ is an orthogonal projection matrix, the generalized inverse of ${\bf P},\,{\bf P}^-={\bf P}$

MLE of ${\boldsymbol{\beta}}$

$$\begin{aligned} \mathsf{P}_{\mathsf{X}}\mathsf{Y} &= \mathsf{X}\hat{\beta} \\ \mathsf{X}(\mathsf{X}^{\mathsf{T}}\mathsf{X})^{-}\mathsf{X}^{\mathsf{T}}\mathsf{Y} &= \mathsf{X}\hat{\beta} \end{aligned}$$

• MLE of
$$\beta$$
 iff $\mathbf{P}_{\mathbf{X}}\mathbf{Y} = \mathbf{X}\hat{\beta}$

• If $\mathbf{X}^T \mathbf{X}$ is invertible, then

$$\hat{oldsymbol{eta}} = (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{Y}$$

and is unique

• But if $\mathbf{X}^T \mathbf{X}$ is not invertible,

$$\hat{\boldsymbol{eta}} = (\mathbf{X}^{T}\mathbf{X})^{-}\mathbf{X}^{T}\mathbf{Y}$$

is one solution which depends on choice of generalized inverse What can we estimate uniquely?

Identifiability

 $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$

 \blacktriangleright Distribution of ${\bf Y}$ determined by ${\boldsymbol \mu}$ and σ^2

$$\blacktriangleright \mu = X\beta = \mu(\beta)$$

Identifiability

 β and σ^2 are identifiable if distribution of **Y**, $f_{\mathbf{Y}}(\mathbf{y}; \beta_1, \sigma_1^2) = f_{\mathbf{Y}}(\mathbf{y}; \beta_2, \sigma_2^2)$ implies that $(\beta_1, \sigma_1^2)^T = (\beta_2, \sigma_2^2)^T$ For linear models, equivalent definition is that β is identifiable if for any β_1 and $\beta_2 \ \mu(\beta_1) = \mu(\beta_2)$ implies that $\beta_1 = \beta_2$. If $r(\mathbf{X}) = p$ then β is identifiable If **X** is not full rank, there exists

$$oldsymbol{eta}_1
eq oldsymbol{eta}_2$$
, but $oldsymbol{X}oldsymbol{eta}_1 = oldsymbol{X}oldsymbol{eta}_2$ and hence $oldsymbol{eta}$ is not identifiable

Non-Identifiable

Recall the One-way ANOVA model

$$\mu_{ij} = \mu + \tau_j$$
 $\mu = (\mu_{11}, \dots, \mu_{n_11}, \mu_{12}, \dots, \mu_{n_2,2}, \dots, \mu_{1J}, \dots, \mu_{n_JJ})^T$

- ▶ Then $\mu_1 = \mu_2$ even though $eta_1
 eq eta_2$
- β is not identifiable
- yet μ is identifiable, where $\mu = {\sf X} eta$ (a linear combination of eta)

Identifiability and Estimability

Theorem

A function $g(\beta)$ is identifiable if and only if $g(\beta)$ is a function of $\mu(\beta)$

In linear models, historical focus on linear functions. Identifiable linear functions are called *estimable* functions

Definition

A vector valued function $\pmb{\Lambda}\pmb{\beta}$ is estimable if $\pmb{\Lambda}\pmb{\beta}=\pmb{A}\pmb{X}\pmb{\beta}$ for some matrix \pmb{A}

Equivalently

Definition

A vector valued function $\Lambda\beta$ is *estimable* if it has an unbiased linear estimator, i.e. there exists an **A** such that $E(AY) = \Lambda\beta$ for all β

Estimability

Work with scalar functions $\psi = \lambda^T \beta$

Theorem

The function $\psi = \lambda^T \beta$ is estimable if and only if λ^T is a linear combination of the rows of **X**. i.e. there exists \mathbf{a}^T such that $\lambda^T = \mathbf{a}^T \mathbf{X}$

Proof.

The function $\psi = \lambda^T \beta$ is estimable if there exists an \mathbf{a}^T such that $\mathsf{E}[\mathbf{a}^T \mathbf{Y}] = \lambda^T \beta$

$$\begin{aligned} \mathsf{E}[\mathsf{a}^T \mathsf{Y}] &= \mathsf{a}^T \mathsf{E}[\mathsf{Y}] \\ &= \mathsf{a}^T \mathsf{X}\beta \\ &= \lambda^T \beta \end{aligned}$$

if and only if $\boldsymbol{\lambda}^{T} = \mathbf{a}^{T} \mathbf{X}$ for all $\boldsymbol{\beta}$

Estimability of Individual β_j

Proposition For

$$\boldsymbol{\mu} = \mathbf{X}\boldsymbol{eta} = \sum_{j} \mathbf{X}_{j} eta_{j}$$

 β_j is not identifiable if and only if there exists α_j such that $\mathbf{X}_j = \sum_{i \neq j} \mathbf{X}_i \alpha_i$ One-way Anova Model:

$$Y_{ij} = \mu + \tau_j + \epsilon_{ij}$$

$$\boldsymbol{\mu} = \begin{bmatrix} \mathbf{1}_{n_1} & \mathbf{1}_{n_1} & \mathbf{0}_{n_1} & \dots & \mathbf{0}_{n_1} \\ \mathbf{1}_{n_2} & \mathbf{0}_{n_2} & \mathbf{1}_{n_2} & \dots & \mathbf{0}_{n_2} \\ \vdots & \vdots & \ddots & \vdots & & \\ \mathbf{1}_{n_J} & \mathbf{0}_{n_J} & \mathbf{0}_{n_J} & \dots & \mathbf{1}_{n_J} \end{bmatrix} \begin{pmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \vdots \\ \tau_J \end{pmatrix}$$

Are any parameters μ or τ_j identifiable?