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Outline

Topics
> Predictive Distributions
» OLS/MLES Unbiased Estimation
» Gauss-Markov Theorem (if time)

Readings: Christensen Chapter 2, Chapter 6.3, ( Appendix A, and
Appendix B as needed)
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Prediction

>

vV v. v Yy

Predict Y, at x] (could be new point or existing point)
Y* = XIB + €4
E[Ys | x«] = x] B = p1. minimizes squared error loss for
predicting Y, at XI
E[Y. — fF(x)]? = E[Ys — s + pis — F(x)]?
= E[Ye—p]? + Elp — FO0)P? +
2E[(Ys — ) (s — £(x0))]
> E[Y* - /«L*]2

Crossproduct term is O:

E[E[(Ye — p) (s — F(x)) | %] = E[0 - (s = F(x))]

equality if f(x) = E[Y | x|, the “best” predictor of Y,
MLE of p, is x] 3 = Y, (is this unique?)

OLS Best Linear predictor of Y,

Under joint Normality of Y, X Best Predictor
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Predictive Distribution

Look at
Y,— Y. =x/B—xT3+e,

var(Y — Y) = var(x] 8 — xT B) + var(e,)

Two Sources of variation:
» Variation of estimator around true regression

» Variation of error around true regression
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Distribution

Distribution of pivotal quantity

Yi— X*TB
VMSE(1 + xT (XTX)~1x,)

~ t(n—p,0,1)

Number of columns (rank) of X is p

(1 — «)100 % Prediction Interval

xI B to/2\/MSE(L + x,(XTX)~1xT)
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Models & MLEs

> Y ~ N(p,0%l,) with p € C(X) & pu =X
» Maximum Likelihood Estimator (MLE) of pu is PxY

» Pyx is the orthogonal projection operator on the column space
of X; e.g. X full rank Px = X(XTX)~1XT

» If X7 X is not invertible use a generalized inverse
A generalize inverse of A: A~ satisfies AATA = A
Lemma (B.43)
If G and H are generalized inverses of (X7 X) then
1. XGXTX = XHXTX =X
2. XGXT = XHXT
Px = X(XTX)~XT is the orthogonal projection operator onto

C(X) (does not depend on choice of generalized inverse!) [See
proof in Theorem B.44]
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Generalize Inverses

A generalize inverse of A: A~ satisfies AATA = A
Special Case: Moore-Penrose Generalized Inverse

» Decompose symmetric A = UAUT
» A, =UAUT
» N is diagonal with

NN £
P10 ifA=0

v

Symmetric Ay, = (Ayp) "

v

Reflexive Ay, AA L = Ay p

If P is an orthogonal projection matrix, the generalized inverse of
PP =P
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MLE of 3

PxY = X3
X(XTX)" XY = X3

» MLE of 3 iff PxY = X33
» If XTX is invertible, then

B=X"X)"IxTY
and is unique
» But if X" X is not invertible,
B=X"X)"XTY

is one solution which depends on choice of generalized inverse
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|dentifiability

Y ~ N(u, 0?)
» Distribution of Y determined by p and o2
> p=XB=pu(B)

Identifiability

B and o2 are identifiable if distribution of Y,

A (y; B1,02) = ~(y; By, 03) implies that (B1,03)" = (B,,03)"
For linear models, equivalent definition is that 3 is identifiable if

for any B; and 3, u(B;) = u(By) implies that 3, = 3,. If
r(X) = p then 3 is identifiable If X is not full rank, there exists

B1 # By, but XB; = X3, and hence 3 is not identifiable
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Non-Identifiable

Recall the One-way ANOVA model

Kij = M+TJ B = (:U'117' <oy Mgl 12y e ey np 25 - ey By - - 7,UnJJ)T

v

Let By = (i, 71,...,74)"

Let By = (u— 42,71 +42,...,7,+42)7

Then pq; = p, even though B, # 3,

3 is not identifiable

» yet w is identifiable, where = X3 (a linear combination of

B)

v

v

v
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|dentifiability and Estimability

Theorem
A function g(8) is identifiable if and only if g(3) is a function of
w(B)

In linear models, historical focus on linear functions. ldentifiable
linear functions are called estimable functions

Definition

A vector valued function A3 is estimable if N3 = AX3 for some
matrix A

Equivalently

Definition

A vector valued function A3 is estimable if it has an unbiased linear
estimator, i.e. there exists an A such that E(AY) = AS for all 8
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Estimability

Work with scalar functions v = AT 3

Theorem

The function 1) = AT 3 is estimable if and only if X7 is a linear
combination of the rows of X. i.e. there exists a' such that
AT =a™X

Proof.

The function 1y = AT 3 is estimable if there exists an a’ such that
ER@TY] =23

E[a’Y] al E[Y]
a'Xgs
= A'g

if and only if AT =a’X for all 8 O
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Estimability of Individual j3;

Proposition
For

p=XB=> X;B
J
Bj is not identifiable if and only if there exists «; such that
XJ' = Ziyéj X,-a,-
One-way Anova Model:

Yi=p+7j+¢

1y, 1o 05 ... 0Oy ﬁl
1n2 0”2 1n2 PR 0n2 T
K= . . . : 2
Loy On, On o Lo ||

Are any parameters p or 7; identifiable?
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