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> If smallest \; — 0 then MSE — oo

» Similar problem with g prior or mixtures of g-priors
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Orthogonal Regression

U'Y = U'la+U'U,LV B+ U"e

Vi, .
Y* = 0 L ) + €
0nfpfl 0n7p71><p

joN
Il

y
= (LT )1LTU;Yor%;:y;k/l,-forizl,...,p

> Vaf(%’) =o?/I?
Directions in X space U; with small eigenvectors /; have the largest
variances. Unstable directions.

Q>



Ridge Regression & Independent Prior
(Another) Normal Conjugate Prior Distribution on ~:

1

Yo~ N(Opa &Ip)



Ridge Regression & Independent Prior
(Another) Normal Conjugate Prior Distribution on ~:

1

Yo~ N(Opa &Ip)

Posterior mean

F=(LTL+k)ILTULY = (LTL+ k) TLT LY



Ridge Regression & Independent Prior
(Another) Normal Conjugate Prior Distribution on ~:

1

Yo~ N(Opa &Ip)

Posterior mean

y=(LTL+k)ILTUNY = (LTL+ k)MLT LY




Ridge Regression & Independent Prior
(Another) Normal Conjugate Prior Distribution on ~:

1

Yo~ N(Opa alp)

Posterior mean

F=(LTL+k)ILTULY = (LTL+ k) TLT LY

I? A

g 1

7’:/12+k/712)\,+k’y’

> When \; — 0 then 4; — 0

» When k — 0 we get OLS back but if k gets too big posterior
mean goes to zero.
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Transform

Transform back B = V&

v

B=(XTX+k)IXTX3

» importance of standardizing

v

Is there a value of k for which ridge is better in terms of
Expected MSE than OLS?

Choice of k?

v
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MSE

Can show that
E[(B-8)"(B-B)] =Elv—9) (v 4]

> Var(y; —4i) = o?[F /(I + k)?
> Bias of 7 is —k/(I? + k)

» MSE
22 /2+k 22 /2+k

The derivative with respect to k is negative at k = 0, hence the
function is decreasing.

Since k = 0 is OLS, this means that is a value of k that will always
be better than OLS
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Longley Data
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OLS

> longley.lm = 1lm(Employed ~

> summary (longley.lm)

Coefficients:

Estimate Std. Error t value

(Intercept) -3.482e+03
GNP.deflator 1.506e-02
GNP -3.582e-02
Unemployed -2.020e-02
Armed.Forces -1.033e-02
Population -5.110e-02
Year 1.829e+00

Signif. codes: 0 '*xx!'

8.
.492e-02
.349e-02
.884e-03
.143e-03
.261e-01
.555e-01

NN D W

904e+02

0.001 '*x!

-3.911

0.177
-1.070
-4.136
-4.822
-0.226

4.016

0.01 'x!

., data=longley)

Pr>ltl)
.003560
.863141
.312681
.002535
.000944
.826212
.003037

O O O O O oo

0.05 '.

* %

* %

* % %

*k

' 0.1

Residual standard error: 0.3049 on 9 degrees of freedom
Multiple R-squared: 0.9955,Adjusted R-squared: 0.9925
F-statistic: 330.3 on 6 and 9 DF,

p-value: 4.984e-10

1



Ridge Trace
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Generalized Cross-validation

> select(1lm.ridge(Employed ~ ., data=longley,
lambda=seq(0, 0.1, 0.0001)))

modified HKB estimator is 0.004275357
modified L-W estimator is 0.03229531
smallest value of GCV at 0.0028

> longley.RReg = 1lm.ridge(Employed ~ ., data=longley,
lambda=0.0028)
> coef (longley.RReg)
GNP.deflator GNP Unemployed Armed.Forces
-2.950e+03 -5.381e-04 -1.822e-02 -1.76e-02 -9.607e-03

Population Year
-1.185e-01 1.557e+00



Testimators

Goldstein & Smith (1974) have shown that if

1. Ogh,-gland&,-:h;f“y,-

2
Vi 1+h;
2. a3y < 1-h,

then 7; has smaller MSE than #%;

Case: If v; < Var(¥;) = 0'2//,-2 then h; = 0 and #; is better.
Apply: Estimate o2 with SSE/(n - p - 1) and ~; with 4;. Set

h; = 0 if t-statistic is less than 1.

“testimator” - see also Sclove (JASA 1968) and Copas ( JRSSB
1983)
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Generalized Ridge
Instead of ~; Y N(0, 02 /k) take

ind
v~ N(O702/ki)
Then Condition of Goldstein & Smith becomes

2 1
2 2
P Z 4 =
e [kj i ’,-2]
> If /; is small almost any k; will improve over OLS

> if /,-2 is large then only very small values of k; will give an
improvement
» Prior on k;?
» Induced prior on 37
v PIN(0,0%/ki) < B ~ N(0,02VK V)

which is not diagonal. Loss of invariance.



Summary

v

OLS can clearly be dominated by other estimators

v

Lead to Bayes like estimators

v

choice of penalities or prior hyperparameters

v

hierarchical model with prior on k;



