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How Good are Estimators?

Quadratic loss for estimating β using estimator a

L(β, a) = (β − a)T (β − a)

I Under OLS or the Reference prior the Expected Mean Square
Error

EY[(β − β̂)T (β − β̂) = σ2tr[(XTX)−1]

= σ2
p∑

j=1

λ−1
j

I If smallest λj → 0 then MSE →∞
I Similar problem with g prior or mixtures of g -priors
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Canonical Representation & Ridge Regression

Assume that X has been centered and standardized so that
XTX = corr(X)

(use scale or sweep functions in R)

I Write X = UpLVT Singular Value Decomposition where
UT

p Up = Ip and V is p × p orthogonal matrix, L is diagonal

Y = 1α + UpLV
Tβ + ε

I Let U = [1/
√
nUp Un−p−1] n × n orthogonal matrix

I Rotate by UT

UTY = UT1α + UTUpLV
Tβ + UTε

Y∗ =

 √
n 0p

0 L
0n−p−1 0n−p−1×p

( α
γ

)
+ ε∗
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Orthogonal Regression

UTY = UT1α + UTUpLV
Tβ + UTε

Y∗ =

 √
n 0p

0 L
0n−p−1 0n−p−1×p

( α
γ

)
+ ε∗

I α̂ = ȳ

I γ̂ = (LTL)−1LTUT
p Y or γ̂i = y∗i /li for i = 1, . . . , p

I Var(γ̂i ) = σ2/l2i

Directions in X space Uj with small eigenvectors li have the largest
variances. Unstable directions.
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Ridge Regression & Independent Prior

(Another) Normal Conjugate Prior Distribution on γ:

γ | φ ∼ N(0p,
1

φk
Ip)

Posterior mean

γ̃ = (LTL + kI)−1LTUT
p Y = (LTL + kI)−1LTLγ̂

γ̃i =
l2i

l2i + k
γ̂i =

λi
λi + k

γ̂i

I When λi → 0 then γ̃i → 0

I When k → 0 we get OLS back but if k gets too big posterior
mean goes to zero.
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Transform

I Transform back β̃ = Vγ̃

β̃ = (XTX + kI)−1XTXβ̂

I importance of standardizing

I Is there a value of k for which ridge is better in terms of
Expected MSE than OLS?

I Choice of k?
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MSE

Can show that

E[(β − β̃)T (β − β̃)] = E[(γ − γ̃)T (γ − γ̃]

I Var(γi − γ̃i ) = σ2l2i /(l2i + k)2

I Bias of γ̃ is −k/(l2i + k)

I MSE

σ2
∑
i

l2i
(l2i + k)2

+ k2
∑
i

γ2i
(l2i + k)2

The derivative with respect to k is negative at k = 0, hence the
function is decreasing.

Since k = 0 is OLS, this means that is a value of k that will always
be better than OLS
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Alternative Motivation

I If β̂ is unconstrained expect high variance with nearly singular
X

I Let Yc = (I− P1)Y and Xc the centered and standardized X
matrix

I Control how large coefficients may grow

min
β

(Yc − Xcβ)T (Yc − Xcβ)

subject to ∑
β2j ≤ t

I Equivalent Quadratic Programming Problem

min
β
‖Yc − Xcβ‖2 + k‖β‖2

I “penalized” likelihood
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Longley Data
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OLS

> longley.lm = lm(Employed ~ ., data=longley)

> summary(longley.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.482e+03 8.904e+02 -3.911 0.003560 **

GNP.deflator 1.506e-02 8.492e-02 0.177 0.863141

GNP -3.582e-02 3.349e-02 -1.070 0.312681

Unemployed -2.020e-02 4.884e-03 -4.136 0.002535 **

Armed.Forces -1.033e-02 2.143e-03 -4.822 0.000944 ***

Population -5.110e-02 2.261e-01 -0.226 0.826212

Year 1.829e+00 4.555e-01 4.016 0.003037 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3049 on 9 degrees of freedom

Multiple R-squared: 0.9955,Adjusted R-squared: 0.9925

F-statistic: 330.3 on 6 and 9 DF, p-value: 4.984e-10
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Generalized Cross-validation

> select(lm.ridge(Employed ~ ., data=longley,

lambda=seq(0, 0.1, 0.0001)))

modified HKB estimator is 0.004275357

modified L-W estimator is 0.03229531

smallest value of GCV at 0.0028

> longley.RReg = lm.ridge(Employed ~ ., data=longley,

lambda=0.0028)

> coef(longley.RReg)

GNP.deflator GNP Unemployed Armed.Forces

-2.950e+03 -5.381e-04 -1.822e-02 -1.76e-02 -9.607e-03

Population Year

-1.185e-01 1.557e+00



Testimators

Goldstein & Smith (1974) have shown that if

1. 0 ≤ hi ≤ 1 and γ̃i = hi γ̂i

2.
γ2
i

Var(γ̂i )
< 1+hi

1−hi

then γ̃i has smaller MSE than γ̂i

Case: If γj < Var(γ̂i ) = σ2/l2i then hi = 0 and γ̃i is better.

Apply: Estimate σ2 with SSE/(n - p - 1) and γi with γ̂i . Set
hi = 0 if t-statistic is less than 1.

“testimator” - see also Sclove (JASA 1968) and Copas ( JRSSB
1983)



Generalized Ridge
Instead of γj

iid∼ N(0, σ2/k) take

γj
ind∼ N(0, σ2/ki )

Then Condition of Goldstein & Smith becomes

γ2i < σ2
[

2

kj
+

1

l2i

]
I If li is small almost any ki will improve over OLS

I if l2i is large then only very small values of ki will give an
improvement

I Prior on ki?

I Induced prior on β?

γj
ind∼ N(0, σ2/ki )⇔ β ∼ N(0, σ2VK−1VT )

which is not diagonal. Loss of invariance.
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Summary

I OLS can clearly be dominated by other estimators

I Lead to Bayes like estimators

I choice of penalities or prior hyperparameters

I hierarchical model with prior on ki


