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Multiple Outliers

I Hoeting, Madigan and Raftery (in various permutations)
consider the problem of simultaneous variable selection and
outlier identification.

I This is implemented in the library(BMA) in the function
MC3.REG. This has the advantage that more than 2 points
may be considered as outliers at the same time.

I The function uses a Markov chain to identify both important
variables and potential outliers, but is coded in Fortran so
should run reasonably quickly.

I Can also use BAS or other variable selection programs



duke.eps

Multiple Outliers

I Hoeting, Madigan and Raftery (in various permutations)
consider the problem of simultaneous variable selection and
outlier identification.

I This is implemented in the library(BMA) in the function
MC3.REG. This has the advantage that more than 2 points
may be considered as outliers at the same time.

I The function uses a Markov chain to identify both important
variables and potential outliers, but is coded in Fortran so
should run reasonably quickly.

I Can also use BAS or other variable selection programs



duke.eps

Multiple Outliers

I Hoeting, Madigan and Raftery (in various permutations)
consider the problem of simultaneous variable selection and
outlier identification.

I This is implemented in the library(BMA) in the function
MC3.REG. This has the advantage that more than 2 points
may be considered as outliers at the same time.

I The function uses a Markov chain to identify both important
variables and potential outliers, but is coded in Fortran so
should run reasonably quickly.

I Can also use BAS or other variable selection programs



duke.eps

Multiple Outliers

I Hoeting, Madigan and Raftery (in various permutations)
consider the problem of simultaneous variable selection and
outlier identification.

I This is implemented in the library(BMA) in the function
MC3.REG. This has the advantage that more than 2 points
may be considered as outliers at the same time.

I The function uses a Markov chain to identify both important
variables and potential outliers, but is coded in Fortran so
should run reasonably quickly.

I Can also use BAS or other variable selection programs



duke.eps

Multiple Outliers

I Hoeting, Madigan and Raftery (in various permutations)
consider the problem of simultaneous variable selection and
outlier identification.

I This is implemented in the library(BMA) in the function
MC3.REG. This has the advantage that more than 2 points
may be considered as outliers at the same time.

I The function uses a Markov chain to identify both important
variables and potential outliers, but is coded in Fortran so
should run reasonably quickly.

I Can also use BAS or other variable selection programs



duke.eps

Using BAS

library(MASS)

data(stackloss)

n = nrow(stackloss)

stack.out = cbind(stackloss, diag(n))

library(BAS)

BAS.stack = bas.lm(stack.loss ~ ., data=stack.out,

prior="hyper-g-n", a=3,

modelprior=tr.beta.binomial(1, 1,15) ,

method="MCMC", MCMC.it=200000)
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Output

P(B != 0 | Y) model 1 model 2 model 3 model 4 model 5
Intercept 1.00 1.00 1.00 1.00 1.00 1.00
Air.Flow 1.00 1.00 1.00 1.00 1.00 1.00

Water.Temp 0.23 0.00 0.00 0.00 1.00 1.00
Acid.Conc. 0.04 0.00 0.00 0.00 0.00 0.00

‘1‘ 0.22 0.00 0.00 0.00 0.00 1.00
‘2‘ 0.07 0.00 0.00 0.00 0.00 0.00
‘3‘ 0.24 0.00 0.00 0.00 0.00 1.00
‘4‘ 0.75 1.00 0.00 1.00 1.00 1.00
‘5‘ 0.03 0.00 0.00 0.00 0.00 0.00
‘6‘ 0.04 0.00 0.00 0.00 0.00 0.00
‘7‘ 0.03 0.00 0.00 0.00 0.00 0.00
‘8‘ 0.03 0.00 0.00 0.00 0.00 0.00
‘9‘ 0.03 0.00 0.00 0.00 0.00 0.00

‘10‘ 0.03 0.00 0.00 0.00 0.00 0.00
‘11‘ 0.03 0.00 0.00 0.00 0.00 0.00
‘12‘ 0.04 0.00 0.00 0.00 0.00 0.00
‘13‘ 0.16 0.00 0.00 1.00 0.00 0.00
‘14‘ 0.08 0.00 0.00 0.00 0.00 0.00
‘15‘ 0.03 0.00 0.00 0.00 0.00 0.00
‘16‘ 0.03 0.00 0.00 0.00 0.00 0.00
‘17‘ 0.03 0.00 0.00 0.00 0.00 0.00
‘18‘ 0.02 0.00 0.00 0.00 0.00 0.00
‘19‘ 0.04 0.00 0.00 0.00 0.00 0.00
‘20‘ 0.06 0.00 0.00 0.00 0.00 0.00
‘21‘ 0.94 1.00 1.00 1.00 1.00 1.00
BF 0.13 0.01 0.08 0.07 1.00

PostProbs 0.24 0.11 0.03 0.02 0.02
R2 0.96 0.93 0.97 0.97 0.99
dim 4.00 3.00 5.00 5.00 7.00

logmarg 22.17 19.43 21.68 21.57 24.18
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BAS
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BAS
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Body Fat Data: Intervals w/ All Data

Response % Body Fat and Predictor Waist Circumference

95% confidence and prediction intervals for bodyfat.lm
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Which analysis do we use? with Case 39 or not – or something
different?
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Cook’s Distance
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Options for Handling Influential Cases

I Are there scientific grounds for eliminating the case?

I Test if the case has a different mean than population

I Report results with and without the case

I Model Averaging to Account for Model Uncertainty?

I Full model Y = Xβ + Inδ + ε

I 2n submodels γi = 0⇔ δi = 0

I If γi = 1 then case i has a different mean “mean shift”
outliers.
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Mean Shift = Variance Inflation

I Model Y = Xβ + Inδ + ε

I Prior
δi | γi ∼ N(0,Vσ2γi )
γi ∼ Ber(π)

Then εi given σ2 is independent of δi and

ε∗i ≡ εi + δi | σ2
{

N(0, σ2) wp (1− π)
N(0, σ2(1 + V )) wp π

Model Y = Xβ + ε∗ “variance inflation”
V + 1 = K = 7 in the paper by Hoeting et al. package BMA
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Simultaneous Outlier and Variable Selection

MC3.REG(all.y = bodyfat$Bodyfat, all.x = as.matrix(bodyfat$Abdomen),

num.its = 10000, outliers = TRUE)

Model parameters: PI=0.02 K=7 nu=2.58 lambda=0.28 phi=2.85

15 models were selected

Best 5 models (cumulative posterior probability = 0.9939):

prob model 1 model 2 model 3 model 4 model 5

variables

all.x 1 x x x x x

outliers

39 0.94932 x x . x .

204 0.04117 . . . x .

207 0.10427 . x . . x

post prob 0.815 0.095 0.044 0.035 0.004
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Change Error Assumptions

Yi
ind∼ t(ν, α + βxi , 1/φ)

L(α, β, φ) ∝
n∏

i=1

φ1/2
(

1 +
φ(yi − α− βxi )2

ν

)− (ν+1)
2

Use Prior p(α, β, φ) ∝ 1/φ

Posterior distribution

p(α, β, φ | Y ) ∝ φn/2−1
n∏

i=1

(
1 +

φ(yi − α− βxi )2

ν

)− (ν+1)
2
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Bounded Influence - West 1984 (and references within)

Treat σ2 as given, then influence of individual observations on the
posterior distribution of β in the model where E[Yi ] = xTi β is
investigated through the score function:

d

dβ
log p(β | Y) =

d

dβ
log p(β) +

n∑
i=1

xg(yi − xTi β)

where

g(ε) = − d

dε
log p(ε)

is the influence function of the error distribution (unimodal,
continuous, differentiable, symmetric)

An outlying observation yj is accommodated if the posterior
distribution for p(β | Y(i)) converges to p(β | Y) for all β as
|Yi | → ∞. Requires error models with influence functions that go
to zero such as the Student t (O’Hagan, 1979)
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Choice of df
I Score function for t with α degrees of freedom has turning

points at ±
√
α
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I g ′(ε) is negative when ε2 > α (standardized errors)
I Contribution of observation to information matrix is negative

and the observation is doubtful
I Suggest taking α = 8 or α = 9 to reject errors larger than

√
8

or 3 sd.

Problem: No closed form solution for posterior distribution
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Scale-Mixtures of Normal Representation

Zi
iid∼ t(ν, 0, σ2)⇔

Zi | λi
ind∼ N(0, σ2/λi )

λi
iid∼ G (ν/2, ν/2)

Integrate out “latent” λ’s to obtain marginal distribution.
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Latent Variable Model

Yi | α, β, φ, λ
ind∼ N(α + βxi ,

1

φλi
)

λi
iid∼ G (ν/2, ν/2)

p(α, β, φ) ∝ 1/φ

Joint Posterior Distribution:

p((α, β, φ, λ1, . . . , λn | Y ) ∝ φn/2 exp

{
−φ

2

∑
λi (yi − α− βxi )2

}
×

φ−1

n∏
i=1

λ
ν/2−1
i exp(−λiν/2)
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Just Another Gibbs Sampler (and more)

I Model

I Data

I Initial values (optional)

May do this through ordinary text files or use the functions in
R2jags to specify model, data, and initial values then call jags.
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Model Specification via R2jags

rr.model = function() {

for (i in 1:n) {

mu[i] <- alpha0 + alpha1*(X[i] - Xbar)

lambda[i] ~ dgamma(9/2, 9/2)

prec[i] <- phi*lambda[i]

Y[i] ~ dnorm(mu[i], prec[i])

}

phi ~ dgamma(1.0E-6, 1.0E-6)

alpha0 ~ dnorm(0, 1.0E-6)

alpha1 ~ dnorm(0,1.0E-6)

}
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Notes on Models

I Distributions of stochastic “nodes” are specified using ∼

I Assignment of deterministic “nodes” uses <- (NOT =)

I JAGS allows expressions as arguments in distributions

I Normal distributions are parameterized using precisions, so
dnorm(0, 1.0E-6) is a N(0, 1.0× 106)

I uses for loop structure as in R for model description but
coded in C++ so is fast!
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Data

A list or rectangular data structure for all data and summaries of
data used in the model

bf.data = list(Y = bodyfat$Bodyfat,

X=bodyfat$Abdomen)

bf.data$n = length(bf.data$Y)

bf.data$Xbar = mean(bf.data$X)
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Specifying which Parameters to Save

The parameters to be monitored and returned to R are specified
with the variable parameters

parameters = c("beta0", "beta1", "sigma",

"mu34", "y34", "lambda[39]")

I All of the above (except lambda) are calculated from the other
parameters. (See R-code for definitions of these parameters.)

I lambda[39] saves only the 39th case of λ

I To save a whole vector (for example all lambdas, just give the
vector name)
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Running jags from R

bf.sim = jags(bf.data, inits=NULL, par=parameters,

model=rr.model,

n.chains=2, n.iter=10000,

)
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Output

mean sd 2.5% 50% 97.5%

beta0 -41.70 2.75 -46.91 -41.67 -36.40
beta1 0.66 0.03 0.60 0.66 0.71
sigma 4.48 0.23 4.05 4.46 4.96
mu34 15.10 0.35 14.43 15.10 15.82

y34 14.94 5.15 4.37 15.21 24.65
lambda[39] 0.33 0.16 0.11 0.30 0.72
95% HPD interval for expected bodyfat (14.5, 15.8)

95% HPD interval for bodyfat (5.1, 25.3)
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Comparison

I 95% Probability Interval for β is (0.60, 0.71) with t9 errors

I 95% Confidence Interval for β is (0.58, 0.69) (all data normal
model)

I 95% Confidence Interval for β is (0.61, 0.73) ( normal model
without case 39)

Results intermediate without having to remove any observations
Case 39 down weighted by λ39
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Full Conditional for λj

p(λj | rest,Y ) ∝ p(α, β, φ, λ1, . . . , λn | Y )

∝ φn/2−1
n∏

i=1

exp

{
−φ

2
λi (yi − α− βxi )2

}
×

n∏
i=1

λ
ν+1
2
−1

i exp(−λi
ν

2
)

Ignore all terms except those that involve λj

λj | rest,Y ∼ G

(
ν + 1

2
,
φ(yj − α− βxj)2 + ν

2

)
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Weights

Under prior E [λi ] = 1

Under posterior, large residuals are down-weighted (approximately
those bigger than

√
ν)

Posterior Distribution

λ39
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Prior Distributions on Parameter

As a general recommendation, the prior distribution should have
“heavier” tails than the likelihood

I with t9 errors use a tα with α < 9

I also represent via scale mixture of normals

I Horseshoe, Double Pareto, Cauchy all have heavier tails

I See Stack-loss code
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