Robust Bayesian Regression Readings: Hoff Chapter 9, West JRSSB 1984, Fúquene, Pérez & Pericchi 2015

STA 721 Duke University

Duke University

November 21, 2017

duke ens

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Hoeting, Madigan and Raftery (in various permutations) consider the problem of simultaneous variable selection and outlier identification.

- Hoeting, Madigan and Raftery (in various permutations) consider the problem of simultaneous variable selection and outlier identification.
- This is implemented in the library(BMA) in the function MC3.REG. This has the advantage that more than 2 points may be considered as outliers at the same time.

- Hoeting, Madigan and Raftery (in various permutations) consider the problem of simultaneous variable selection and outlier identification.
- This is implemented in the library(BMA) in the function MC3.REG. This has the advantage that more than 2 points may be considered as outliers at the same time.
- The function uses a Markov chain to identify both important variables and potential outliers, but is coded in Fortran so should run reasonably quickly.

・ロト・(部・・モー・モー・)への

- Hoeting, Madigan and Raftery (in various permutations) consider the problem of simultaneous variable selection and outlier identification.
- This is implemented in the library(BMA) in the function MC3.REG. This has the advantage that more than 2 points may be considered as outliers at the same time.
- The function uses a Markov chain to identify both important variables and potential outliers, but is coded in Fortran so should run reasonably quickly.

Can also use BAS or other variable selection programs

- Hoeting, Madigan and Raftery (in various permutations) consider the problem of simultaneous variable selection and outlier identification.
- This is implemented in the library(BMA) in the function MC3.REG. This has the advantage that more than 2 points may be considered as outliers at the same time.
- The function uses a Markov chain to identify both important variables and potential outliers, but is coded in Fortran so should run reasonably quickly.

Can also use BAS or other variable selection programs

Using BAS

Output

	P(B != 0 Y)	model 1	model 2	model 3	model 4	model 5
Intercept	1.00	1.00	1.00	1.00	1.00	1.00
Air.Flow	1.00	1.00	1.00	1.00	1.00	1.00
Water.Temp	0.23	0.00	0.00	0.00	1.00	1.00
Acid.Conc.	0.04	0.00	0.00	0.00	0.00	0.00
'1'	0.22	0.00	0.00	0.00	0.00	1.00
'2'	0.07	0.00	0.00	0.00	0.00	0.00
'3'	0.24	0.00	0.00	0.00	0.00	1.00
'4'	0.75	1.00	0.00	1.00	1.00	1.00
'5'	0.03	0.00	0.00	0.00	0.00	0.00
'6'	0.04	0.00	0.00	0.00	0.00	0.00
'7'	0.03	0.00	0.00	0.00	0.00	0.00
'8'	0.03	0.00	0.00	0.00	0.00	0.00
'9'	0.03	0.00	0.00	0.00	0.00	0.00
'10'	0.03	0.00	0.00	0.00	0.00	0.00
'11'	0.03	0.00	0.00	0.00	0.00	0.00
'12'	0.04	0.00	0.00	0.00	0.00	0.00
'13'	0.16	0.00	0.00	1.00	0.00	0.00
'14'	0.08	0.00	0.00	0.00	0.00	0.00
'15'	0.03	0.00	0.00	0.00	0.00	0.00
'16'	0.03	0.00	0.00	0.00	0.00	0.00
'17'	0.03	0.00	0.00	0.00	0.00	0.00
'18'	0.02	0.00	0.00	0.00	0.00	0.00
'19'	0.04	0.00	0.00	0.00	0.00	0.00
'20'	0.06	0.00	0.00	0.00	0.00	0.00
'21'	0.94	1.00	1.00	1.00	1.00	1.00
BF		0.13	0.01	0.08	0.07	1.00
PostProbs		0.24	0.11	0.03	0.02	0.02
R2		0.96	0.93	0.97	0.97	0.99
dim		4.00	3.00	5.00	5.00	7.00
logmarg		22.17	19.43	21.68	21.57	24.18

duke.eps

BAS

BAS

Body Fat Data: Intervals w/ All Data

Response % Body Fat and Predictor Waist Circumference

Which analysis do we use? with Case 39 or not – or something different?

duke.eps <□ → < 클 → < 클 → < 클 → = → ○ Q (~

Cook's Distance

Are there scientific grounds for eliminating the case?

- Are there scientific grounds for eliminating the case?
- Test if the case has a different mean than population

duke ens

< □ > < □ > < □ > < □ > < □ > < □ >

- Are there scientific grounds for eliminating the case?
- Test if the case has a different mean than population
- Report results with and without the case

- Are there scientific grounds for eliminating the case?
- Test if the case has a different mean than population
- Report results with and without the case
- Model Averaging to Account for Model Uncertainty?

- Are there scientific grounds for eliminating the case?
- Test if the case has a different mean than population
- Report results with and without the case
- Model Averaging to Account for Model Uncertainty?
- Full model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{I}_n \delta + \epsilon$

- Are there scientific grounds for eliminating the case?
- Test if the case has a different mean than population
- Report results with and without the case
- Model Averaging to Account for Model Uncertainty?
- Full model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{I}_n \delta + \epsilon$
- 2^n submodels $\gamma_i = 0 \Leftrightarrow \delta_i = 0$
- If *γ_i* = 1 then case *i* has a different mean "mean shift" outliers.

Mean Shift = Variance Inflation

• Model
$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{I}_n \delta + \epsilon$$

Prior

$$egin{aligned} \delta_i \mid \gamma_i \sim \textit{N}(0, \textit{V}\sigma^2\gamma_i) \ \gamma_i \sim \textit{Ber}(\pi) \end{aligned}$$

Then ϵ_i given σ^2 is independent of δ_i and

$$\epsilon_i^* \equiv \epsilon_i + \delta_i \mid \sigma^2 \begin{cases} N(0, \sigma^2) & wp \quad (1 - \pi) \\ N(0, \sigma^2(1 + V)) & wp \quad \pi \end{cases}$$

Model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \epsilon^*$ "variance inflation" V + 1 = K = 7 in the paper by Hoeting et al. package BMA

Simultaneous Outlier and Variable Selection

MC3.REG(all.y = bodyfat\$Bodyfat, all.x = as.matrix(bodyfat\$Abdom num.its = 10000, outliers = TRUE)

Model parameters: PI=0.02 K=7 nu=2.58 lambda=0.28 phi=2.85

15 models were selected Best 5 models (cumulative posterior probability = 0.9939):

	prob	model	1 model 2	2 model 3	model 4	model 5
variables						
all.x	1	x	x	x	x	x
outliers						
39	0.94932	x	x		x	
204	0.04117	•			x	
207	0.10427	•	x	•	•	x
post prob		0.815	0.095	0.044	0.035	0.004
						duke ens

$$Y_i \stackrel{\text{ind}}{\sim} t(\nu, \alpha + \beta x_i, 1/\phi)$$

$$\begin{array}{rcl} Y_i & \stackrel{\mathrm{ind}}{\sim} & t(\nu, \alpha + \beta x_i, 1/\phi) \\ L(\alpha, \beta, \phi) & \propto & \prod_{i=1}^n \phi^{1/2} \left(1 + \frac{\phi(y_i - \alpha - \beta x_i)^2}{\nu} \right)^{-\frac{(\nu+1)}{2}} \end{array}$$

$$\begin{array}{ll} Y_i & \stackrel{\mathrm{ind}}{\sim} & t(\nu, \alpha + \beta x_i, 1/\phi) \\ L(\alpha, \beta, \phi) & \propto & \prod_{i=1}^n \phi^{1/2} \left(1 + \frac{\phi(y_i - \alpha - \beta x_i)^2}{\nu} \right)^{-\frac{(\nu+1)}{2}} \end{array}$$

Use Prior $p(lpha, eta, \phi) \propto 1/\phi$

$$\begin{array}{ll} Y_i & \stackrel{\mathrm{ind}}{\sim} & t(\nu, \alpha + \beta x_i, 1/\phi) \\ \mathcal{L}(\alpha, \beta, \phi) & \propto & \prod_{i=1}^n \phi^{1/2} \left(1 + \frac{\phi(y_i - \alpha - \beta x_i)^2}{\nu} \right)^{-\frac{(\nu+1)}{2}} \end{array}$$

Use Prior $p(\alpha, \beta, \phi) \propto 1/\phi$

Posterior distribution

$$p(\alpha,\beta,\phi \mid Y) \propto \phi^{n/2-1} \prod_{i=1}^{n} \left(1 + \frac{\phi(y_i - \alpha - \beta x_i)^2}{\nu}\right)^{-\frac{(\nu+1)}{2}}$$

duke.eps ・ロト・「一」・・ヨー・ヨー・シュー・

$$\begin{array}{ll} Y_i & \stackrel{\mathrm{ind}}{\sim} & t(\nu, \alpha + \beta x_i, 1/\phi) \\ \mathcal{L}(\alpha, \beta, \phi) & \propto & \prod_{i=1}^n \phi^{1/2} \left(1 + \frac{\phi(y_i - \alpha - \beta x_i)^2}{\nu} \right)^{-\frac{(\nu+1)}{2}} \end{array}$$

Use Prior $p(\alpha, \beta, \phi) \propto 1/\phi$

Posterior distribution

$$p(\alpha,\beta,\phi \mid Y) \propto \phi^{n/2-1} \prod_{i=1}^{n} \left(1 + \frac{\phi(y_i - \alpha - \beta x_i)^2}{\nu}\right)^{-\frac{(\nu+1)}{2}}$$

duke.eps ・ロト・「一」・・ヨー・ヨー・シュー・

Treat σ^2 as given, then *influence* of individual observations on the posterior distribution of β in the model where $E[\mathbf{Y}_i] = \mathbf{x}_i^T \beta$ is investigated through the score function:

Treat σ^2 as given, then *influence* of individual observations on the posterior distribution of β in the model where $E[\mathbf{Y}_i] = \mathbf{x}_i^T \beta$ is investigated through the score function:

$$\frac{d}{d\beta}\log p(\beta \mid \mathbf{Y}) = \frac{d}{d\beta}\log p(\beta) + \sum_{i=1}^{n} \mathbf{x}g(y_i - \mathbf{x}_i^T\beta)$$

Treat σ^2 as given, then *influence* of individual observations on the posterior distribution of β in the model where $E[\mathbf{Y}_i] = \mathbf{x}_i^T \beta$ is investigated through the score function:

$$\frac{d}{d\beta}\log p(\beta \mid \mathbf{Y}) = \frac{d}{d\beta}\log p(\beta) + \sum_{i=1}^{n} \mathbf{x}g(y_i - \mathbf{x}_i^T\beta)$$

where

$$g(\epsilon) = -rac{d}{d\epsilon}\log p(\epsilon)$$

is the influence function of the error distribution (unimodal, continuous, differentiable, symmetric)

Treat σ^2 as given, then *influence* of individual observations on the posterior distribution of β in the model where $E[\mathbf{Y}_i] = \mathbf{x}_i^T \beta$ is investigated through the score function:

$$\frac{d}{d\beta}\log p(\beta \mid \mathbf{Y}) = \frac{d}{d\beta}\log p(\beta) + \sum_{i=1}^{n} \mathbf{x}g(y_i - \mathbf{x}_i^T\beta)$$

where

$$g(\epsilon) = -rac{d}{d\epsilon}\log p(\epsilon)$$

is the influence function of the error distribution (unimodal, continuous, differentiable, symmetric)

An outlying observation y_j is accommodated if the posterior distribution for $p(\beta | \mathbf{Y}_{(i)})$ converges to $p(\beta | \mathbf{Y})$ for all β as $|\mathbf{Y}_i| \to \infty$. Requires error models with influence functions that go to zero such as the Student t (O'Hagan, 1979)

luke.eps

Score function for t with α degrees of freedom has turning points at ±√α

Score function for t with α degrees of freedom has turning points at ±√α

• $g'(\epsilon)$ is negative when $\epsilon^2 > \alpha$ (standardized errors)

duke ens

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Score function for t with α degrees of freedom has turning points at ±√α

- $g'(\epsilon)$ is negative when $\epsilon^2 > \alpha$ (standardized errors)
- Contribution of observation to information matrix is negative and the observation is doubtful

duke ens

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト ・ 聞

Score function for t with α degrees of freedom has turning points at ±√α

- $g'(\epsilon)$ is negative when $\epsilon^2 > \alpha$ (standardized errors)
- Contribution of observation to information matrix is negative and the observation is doubtful
- Suggest taking $\alpha = 8$ or $\alpha = 9$ to reject errors larger than $\sqrt{8}$ or 3 sd.

duke ens

Score function for t with α degrees of freedom has turning points at ±√α

- $g'(\epsilon)$ is negative when $\epsilon^2 > \alpha$ (standardized errors)
- Contribution of observation to information matrix is negative and the observation is doubtful
- Suggest taking $\alpha = 8$ or $\alpha = 9$ to reject errors larger than $\sqrt{8}$ or 3 sd.

duke ens

Scale-Mixtures of Normal Representation

$Z_i \stackrel{\mathrm{iid}}{\sim} t(\nu, 0, \sigma^2) \Leftrightarrow$

Scale-Mixtures of Normal Representation

$Z_i \stackrel{\mathrm{iid}}{\sim} t(\nu, 0, \sigma^2) \Leftrightarrow$ $Z_i \mid \lambda_i \stackrel{\mathrm{ind}}{\sim} N(0, \sigma^2/\lambda_i)$

Scale-Mixtures of Normal Representation

$$egin{aligned} & Z_i \stackrel{ ext{iid}}{\sim} t(
u,0,\sigma^2) \Leftrightarrow \ & Z_i \mid \lambda_i \stackrel{ ext{ind}}{\sim} \mathcal{N}(0,\sigma^2/\lambda_i) \ & \lambda_i \stackrel{ ext{iid}}{\sim} \mathcal{G}(
u/2,
u/2) \end{aligned}$$

Scale-Mixtures of Normal Representation

$$egin{aligned} & Z_i \stackrel{ ext{iid}}{\sim} t(
u,0,\sigma^2) \Leftrightarrow \ & Z_i \mid \lambda_i \stackrel{ ext{ind}}{\sim} \mathcal{N}(0,\sigma^2/\lambda_i) \ & \lambda_i \stackrel{ ext{iid}}{\sim} \mathcal{G}(
u/2,
u/2) \end{aligned}$$

Integrate out "latent" λ 's to obtain marginal distribution.

$$Y_i \mid \alpha, \beta, \phi, \lambda \stackrel{\text{ind}}{\sim} N(\alpha + \beta x_i, \frac{1}{\phi \lambda_i})$$

$$egin{aligned} Y_i \mid lpha, eta, \phi, \lambda & \stackrel{ ext{ind}}{\sim} & \mathcal{N}(lpha + eta x_i, rac{1}{\phi \lambda_i}) \ \lambda_i & \stackrel{ ext{iid}}{\sim} & \mathcal{G}(
u/2,
u/2) \end{aligned}$$

$$egin{array}{lll} Y_i \mid lpha,eta,\phi,\lambda & \stackrel{ ext{ind}}{\sim} & \mathcal{N}(lpha+eta x_i,rac{1}{\phi\lambda_i}) \ \lambda_i & \stackrel{ ext{iid}}{\sim} & \mathcal{G}(
u/2,
u/2) \ p(lpha,eta,\phi) & \propto & 1/\phi \end{array}$$

$$egin{array}{lll} Y_i \mid lpha, eta, \phi, \lambda & \stackrel{ ext{ind}}{\sim} & \mathcal{N}(lpha + eta \mathbf{x}_i, rac{1}{\phi \lambda_i}) \ \lambda_i & \stackrel{ ext{iid}}{\sim} & \mathcal{G}(
u/2,
u/2) \ p(lpha, eta, \phi) & \propto & 1/\phi \end{array}$$

Joint Posterior Distribution:

$$egin{array}{lll} \mathsf{Y}_i \mid lpha,eta,\phi,\lambda & \stackrel{ ext{ind}}{\sim} & \mathsf{N}(lpha+eta \mathsf{x}_i,rac{1}{\phi\lambda_i}) \ \lambda_i & \stackrel{ ext{iid}}{\sim} & \mathsf{G}(
u/2,
u/2) \ \mathsf{p}(lpha,eta,\phi) & \propto & 1/\phi \end{array}$$

Joint Posterior Distribution:

$$p((\alpha, \beta, \phi, \lambda_1, \dots, \lambda_n \mid Y) \propto \phi^{n/2} \exp\left\{-\frac{\phi}{2} \sum \lambda_i (y_i - \alpha - \beta x_i)^2\right\} imes$$

duke.eps < □ → < 酉 → < 壹 → < 壹 → < Ξ → ○ < ぐ

$$egin{array}{lll} Y_i \mid lpha, eta, \phi, \lambda & \stackrel{ ext{ind}}{\sim} & \mathcal{N}(lpha + eta x_i, rac{1}{\phi \lambda_i}) \ \lambda_i & \stackrel{ ext{iid}}{\sim} & \mathcal{G}(
u/2,
u/2) \ p(lpha, eta, \phi) & \propto & 1/\phi \end{array}$$

Joint Posterior Distribution:

$$p((\alpha, \beta, \phi, \lambda_1, \dots, \lambda_n \mid Y) \propto \phi^{n/2} \exp\left\{-\frac{\phi}{2} \sum \lambda_i (y_i - \alpha - \beta x_i)^2\right\} \times \phi^{-1}$$

duke.eps ∢ロ≻∢⊡≻∢≣≻∢≣≻ ≣ めへぐ

$$egin{array}{lll} Y_i \mid lpha, eta, \phi, \lambda & \stackrel{ ext{ind}}{\sim} & \mathcal{N}(lpha + eta \mathsf{x}_i, rac{1}{\phi \lambda_i}) \ \lambda_i & \stackrel{ ext{iid}}{\sim} & \mathcal{G}(
u/2,
u/2) \ p(lpha, eta, \phi) & \propto & 1/\phi \end{array}$$

Joint Posterior Distribution:

$$p((\alpha, \beta, \phi, \lambda_1, \dots, \lambda_n \mid Y) \propto \qquad \phi^{n/2} \exp\left\{-\frac{\phi}{2} \sum \lambda_i (y_i - \alpha - \beta x_i)^2\right\} \times \phi^{-1}$$
$$\prod_{i=1}^n \lambda_i^{\nu/2-1} \exp(-\lambda_i \nu/2)$$

duke.eps ∢ロ▶ ∢母▶ ∢≧▶ ∢≧▶ 돌 のへぐ

Model

duke.eps

- Model
- Data

- Model
- Data
- Initial values (optional)

- Model
- Data
- Initial values (optional)

May do this through ordinary text files or use the functions in R2jags to specify model, data, and initial values then call jags.

duke ens

- 日本 - 1 日本 - 1 日本 - 日本

Model Specification via R2jags

```
rr.model = function() {
  for (i in 1:n) {
    mu[i] <- alpha0 + alpha1*(X[i] - Xbar)</pre>
    lambda[i] ~ dgamma(9/2, 9/2)
    prec[i] <- phi*lambda[i]</pre>
    Y[i] ~ dnorm(mu[i], prec[i])
  }
  phi ~ dgamma(1.0E-6, 1.0E-6)
  alpha0 ~ dnorm(0, 1.0E-6)
  alpha1 \sim dnorm(0,1.0E-6)
}
```

duke.eps イロト イタト イミト イミト ミー クへぐ

 \blacktriangleright Distributions of stochastic "nodes" are specified using \sim

- \blacktriangleright Distributions of stochastic "nodes" are specified using \sim
- ► Assignment of deterministic "nodes" uses <- (NOT =)</p>

- \blacktriangleright Distributions of stochastic "nodes" are specified using \sim
- ► Assignment of deterministic "nodes" uses <- (NOT =)</p>

duke ens

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

JAGS allows expressions as arguments in distributions

- \blacktriangleright Distributions of stochastic "nodes" are specified using \sim
- ► Assignment of deterministic "nodes" uses <- (NOT =)</p>
- JAGS allows expressions as arguments in distributions
- ▶ Normal distributions are parameterized using precisions, so dnorm(0, 1.0E-6) is a N(0, 1.0 × 10⁶)

duke ens

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- \blacktriangleright Distributions of stochastic "nodes" are specified using \sim
- ► Assignment of deterministic "nodes" uses <- (NOT =)</p>
- JAGS allows expressions as arguments in distributions
- ► Normal distributions are parameterized using precisions, so dnorm(0, 1.0E-6) is a N(0, 1.0 × 10⁶)
- uses for loop structure as in R for model description but coded in C++ so is fast!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A list or rectangular data structure for all data and summaries of data used in the model

The parameters to be monitored and returned to R are specified with the variable parameters

 All of the above (except lambda) are calculated from the other parameters. (See R-code for definitions of these parameters.)

The parameters to be monitored and returned to R are specified with the variable parameters

 All of the above (except lambda) are calculated from the other parameters. (See R-code for definitions of these parameters.)

▶ lambda[39] saves only the 39th case of λ

The parameters to be monitored and returned to R are specified with the variable parameters

- All of the above (except lambda) are calculated from the other parameters. (See R-code for definitions of these parameters.)
- ▶ lambda[39] saves only the 39th case of λ
- To save a whole vector (for example all lambdas, just give the vector name)

The parameters to be monitored and returned to R are specified with the variable parameters

- All of the above (except lambda) are calculated from the other parameters. (See R-code for definitions of these parameters.)
- ▶ lambda[39] saves only the 39th case of λ
- To save a whole vector (for example all lambdas, just give the vector name)

Running jags from R

Output

	mean	sd	2.5%	50%	97.5%
beta0	-41.70	2.75	-46.91	-41.67	-36.40
beta1	0.66	0.03	0.60	0.66	0.71
sigma	4.48	0.23	4.05	4.46	4.96
mu34	15.10	0.35	14.43	15.10	15.82
y34	14.94	5.15	4.37	15.21	24.65
lambda[39]	0.33	0.16	0.11	0.30	0.72
95% HPD interval for expected bodyfat (14.5, 15.8)					
95% HPD interval for bodyfat (5.1, 25.3)					

▶ 95% Probability Interval for β is (0.60, 0.71) with t_9 errors

- ▶ 95% Probability Interval for β is (0.60, 0.71) with t_9 errors
- 95% Confidence Interval for β is (0.58, 0.69) (all data normal model)

duke ens

・ロト・(部・・モー・モー・)への

- ▶ 95% Probability Interval for β is (0.60, 0.71) with t_9 errors
- 95% Confidence Interval for β is (0.58, 0.69) (all data normal model)
- ▶ 95% Confidence Interval for β is (0.61, 0.73) (normal model without case 39)

duke ens

・ロト・(部・・モー・モー・)への

- ▶ 95% Probability Interval for β is (0.60, 0.71) with t_9 errors
- 95% Confidence Interval for β is (0.58, 0.69) (all data normal model)
- ▶ 95% Confidence Interval for β is (0.61, 0.73) (normal model without case 39)

・ロト・(部・・モー・モー・)への

Results intermediate without having to remove any observations

- ▶ 95% Probability Interval for β is (0.60, 0.71) with t_9 errors
- 95% Confidence Interval for β is (0.58, 0.69) (all data normal model)
- ▶ 95% Confidence Interval for β is (0.61, 0.73) (normal model without case 39)

Results intermediate without having to remove any observations Case 39 down weighted by λ_{39}

Full Conditional for λ_j

$p(\lambda_j \mid \text{rest}, Y) \propto p(\alpha, \beta, \phi, \lambda_1, \dots, \lambda_n \mid Y)$

Full Conditional for λ_j

$$p(\lambda_{j} | \text{rest}, Y) \propto p(\alpha, \beta, \phi, \lambda_{1}, \dots, \lambda_{n} | Y)$$

$$\propto \phi^{n/2-1} \prod_{i=1}^{n} \exp\left\{-\frac{\phi}{2}\lambda_{i}(y_{i} - \alpha - \beta x_{i})^{2}\right\} \times$$

$$\prod_{i=1}^{n} \lambda_{i}^{\frac{\nu+1}{2}-1} \exp(-\lambda_{i} \frac{\nu}{2})$$

Full Conditional for λ_j

$$p(\lambda_{j} | \text{rest}, Y) \propto p(\alpha, \beta, \phi, \lambda_{1}, \dots, \lambda_{n} | Y)$$

$$\propto \phi^{n/2-1} \prod_{i=1}^{n} \exp\left\{-\frac{\phi}{2}\lambda_{i}(y_{i} - \alpha - \beta x_{i})^{2}\right\} \times$$

$$\prod_{i=1}^{n} \lambda_{i}^{\frac{\nu+1}{2}-1} \exp(-\lambda_{i} \frac{\nu}{2})$$

Ignore all terms except those that involve λ_j

Full Conditional for λ_i

$$p(\lambda_{j} | \text{rest}, Y) \propto p(\alpha, \beta, \phi, \lambda_{1}, \dots, \lambda_{n} | Y)$$

$$\propto \phi^{n/2-1} \prod_{i=1}^{n} \exp\left\{-\frac{\phi}{2}\lambda_{i}(y_{i} - \alpha - \beta x_{i})^{2}\right\} \times$$

$$\prod_{i=1}^{n} \lambda_{i}^{\frac{\nu+1}{2}-1} \exp(-\lambda_{i} \frac{\nu}{2})$$

Ignore all terms except those that involve λ_j

$$\lambda_j \mid \mathsf{rest}, \mathsf{Y} \sim \mathcal{G}\left(rac{
u+1}{2}, rac{\phi(y_j - lpha - eta x_j)^2 +
u}{2}
ight)$$

duke.eps < □ > < ∄ > < ≣ > < ≣ > ≣ ୍ ଦ୍ <

Weights

Under prior $E[\lambda_i] = 1$

Weights

Under prior $E[\lambda_i] = 1$ Under posterior, large residuals are down-weighted (approximately those bigger than $\sqrt{\nu}$)

Posterior Distribution

As a general recommendation, the prior distribution should have "heavier" tails than the likelihood

As a general recommendation, the prior distribution should have "heavier" tails than the likelihood

duke ens

4 日 > 4 日 > 4 目 > 4 目 > 1 日 > 1 0 0 0

• with t_9 errors use a t_α with $\alpha < 9$

As a general recommendation, the prior distribution should have "heavier" tails than the likelihood

duke eps

- ロ ト - 4 目 ト - 4 目 ト - 9 へ ()

- with t_9 errors use a t_α with $\alpha < 9$
- also represent via scale mixture of normals

As a general recommendation, the prior distribution should have "heavier" tails than the likelihood

- with t_9 errors use a t_α with $\alpha < 9$
- also represent via scale mixture of normals
- Horseshoe, Double Pareto, Cauchy all have heavier tails

As a general recommendation, the prior distribution should have "heavier" tails than the likelihood

- with t_9 errors use a t_α with $\alpha < 9$
- also represent via scale mixture of normals
- ► Horseshoe, Double Pareto, Cauchy all have heavier tails

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

See Stack-loss code

As a general recommendation, the prior distribution should have "heavier" tails than the likelihood

- with t_9 errors use a t_α with $\alpha < 9$
- also represent via scale mixture of normals
- ► Horseshoe, Double Pareto, Cauchy all have heavier tails

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

See Stack-loss code