Sampling Distributions of MLEs Merlise Clyde

STA721 Linear Models

Duke University

September 7, 2017

Outline

Topics

- Student t Distributions
- Chi-squared Distributions

Readings: Christensen Appendix C, Chapter 2

Distribution of ${\boldsymbol{\beta}}$

If $\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$ with \mathbf{X} full rank, then

$$\hat{\boldsymbol{\beta}} \mid \sigma^2, \boldsymbol{\beta} \sim \mathsf{N}\left(\boldsymbol{\beta}, \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}\right) \\ \hat{\beta}_j \mid \beta_j, \sigma^2 \sim \mathsf{N}(\boldsymbol{\beta}, \sigma^2 [(\mathbf{X}^T \mathbf{X})^{-1}]_{jj})$$

Unknown σ^2

$$\hat{eta}_j \mid eta_j, \sigma^2 \sim \mathsf{N}(eta, \sigma^2[(\mathbf{X}^T \mathbf{X})^{-1}]_{jj})$$

If we substitute $\hat{\sigma}^2 = \mathbf{e}^t \mathbf{e}/(n - r(\mathbf{X}))$ in the above?

$$\frac{(\hat{\beta}_j - \beta_j)/\sigma\sqrt{[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj}}}{\sqrt{\frac{\mathbf{e}^T\mathbf{e}/\sigma^2}{(n-r(\mathbf{X}))}}} \stackrel{\mathrm{D}}{=} \frac{N(0,1)}{\sqrt{\chi^2_{n-r(\mathbf{X})}/(n-r(\mathbf{X}))}} \sim t(n-r(\mathbf{X}),0,1)$$

Need to show that $\mathbf{e}^T \mathbf{e} / \sigma^2$ has a χ^2 distribution and is independent of the numerator!

Central Student t Distribution

Definition Let $Z \sim N(0,1)$ and $S \sim \chi^2_p$ with Z and S independent, then

$$W = \frac{Z}{\sqrt{S/p}}$$

has a (central) Student t distribution with p degrees of freedom See Casella & Berger or DeGroot & Schervish for derivation - nice change of variables and marginalization problem!

Chi-Squared Distribution

Definition

If $Z \sim N(0,1)$ then $Z^2 \sim \chi_1^2$ (A Chi-squared distribution with one degree of freedom)

Density

$$f(x) = \frac{1}{\Gamma(1/2)} (1/2)^{-1/2} x^{1/2-1} e^{-x/2} \qquad x > 0$$

Characteristic Function

$$\mathsf{E}[e^{itZ^2}] = \varphi(t) = (1 - 2it)^{-1/2}$$

Chi-Squared Distribution with *p* Degrees of Freedom If $Z_j \stackrel{\text{iid}}{\sim} N(0,1) \ j = 1, \dots p$ then $X \equiv \mathbf{Z}^T \mathbf{Z} = \sum_j^p Z_j^2 \sim \chi_p^2$ Characteristic Function

$$\varphi_X(t) = \mathsf{E}[e^{it\sum_j^p Z_j^2}] \\ = \prod_{j=1}^p \mathsf{E}[e^{itZ_j^2}] \\ = \prod_{j=1}^p (1-2it)^{-1/2} \\ = (1-2it)^{-p/2}$$

A Gamma distribution with shape p/2 and rate 1/2, G(p/2, 1/2)

$$f(x) = \frac{1}{\Gamma(p/2)} (1/2)^{-p/2} x^{p/2-1} e^{-x/2} \qquad x > 0$$

Spectral Decompostion of Projection Matrices

If **P** is an orthogonal projection matrix, then its eigenvalues λ_i are either zero or one with $tr(\mathbf{P}) = \sum_i (\lambda_i) = r(\mathbf{P})$

- $\blacktriangleright \mathbf{P} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$
- $\blacktriangleright \mathbf{P} = \mathbf{P}^2 \Rightarrow \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T = \mathbf{U} \mathbf{\Lambda}^2 \mathbf{U}^T$
- $\mathbf{\Lambda} = \mathbf{\Lambda}^2$ is true only for $\lambda_i = 1$ or $\lambda_i = 0$
- Since $r(\mathbf{P})$ is the number of non-zero eigenvalues, $r(\mathbf{P}) = \sum \lambda_i = \operatorname{tr}(\mathbf{P})$ $\mathbf{P} = [\mathbf{U}_P \mathbf{U}_{P^{\perp}}] \begin{bmatrix} \mathbf{I}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0}_{n-r} \end{bmatrix} \begin{bmatrix} \mathbf{U}_P^T \\ \mathbf{U}_{P^{\perp}}^T \end{bmatrix} = \mathbf{U}_P \mathbf{U}_P^T$ $\mathbf{P} = \sum_{i=1}^r \mathbf{u}_i \mathbf{u}_i^T$

sum of r rank 1 projections.

Quadratic Forms

Theorem

Let $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in C(\mathbf{X})$ then if \mathbf{Q} is a rank k orthogonal projection on to $C(\mathbf{X})^{\perp}$, $(\mathbf{Y}^{\mathsf{T}}\mathbf{Q}\mathbf{Y})/\sigma^2 \sim \chi_k^2$

Proof.

For an orthogonal projection $\mathbf{Q} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{T} = \mathbf{U}_{k}\mathbf{U}_{k}^{T}$ where $C(\mathbf{Q}) = C(\mathbf{U}_{k})$ and $\mathbf{U}_{k}^{T}\mathbf{U}_{k} = \mathbf{I}_{k}$ (Spectral Theorem)

$$\begin{aligned} \mathbf{Y}^{T} \mathbf{Q} \mathbf{Y} &= \mathbf{Y}^{T} \mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{Y} \\ \mathbf{Z} &= \mathbf{U}_{k}^{T} \mathbf{Y} / \sigma \sim \mathrm{N}(\mathbf{U}_{k}^{T} \boldsymbol{\mu}, \mathbf{U}_{k}^{T} \mathbf{U}_{k}) \\ \mathbf{Z} &\sim \mathrm{N}(\mathbf{0}, \mathbf{I}_{k}) \\ \mathbf{Z}^{T} \mathbf{Z} &\sim \chi_{k}^{2} \end{aligned}$$

Since $U^T \mathbf{Y} / \sigma \stackrel{\mathrm{D}}{=} \mathbf{Z}$, $\frac{\mathbf{Y}^T \mathbf{Q} \mathbf{Y}}{\sigma^2} \sim \chi_k^2$

Residual Sum of Squares Error

Let $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in C(\mathbf{X})$. Residual Sum of Squares:

$$\frac{\mathbf{e}^T \mathbf{e}}{\sigma^2} \sim \chi^2_{n-r(\mathbf{X})}$$

Estimated Coefficients and Residuals are Independent

If $\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$ Then $Cov(\mathbf{e}, \hat{\boldsymbol{\beta}}) = \mathbf{0}$ which implies independence

Putting it all together

$$\hat{\boldsymbol{\beta}} \sim \mathsf{N}(\boldsymbol{\beta}, \sigma^{2}(\mathbf{X}^{T}\mathbf{X})^{-1})$$

$$\models (\hat{\beta}_{j} - \beta_{j})/\sigma \sqrt{[(\mathbf{X}^{T}\mathbf{X})^{-1}]}_{jj} \sim \mathsf{N}(0, 1)$$

$$\models \mathbf{e}^{T}\mathbf{e}/\sigma^{2} \sim \chi^{2}_{n-r(\mathbf{X})}$$

- $\hat{\beta}$ and **e** are independent
- Functions of independent random variables are independent

$$\frac{(\hat{\beta}_j - \beta_j)/\sigma\sqrt{[(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}]_{jj}}}{\sqrt{\mathbf{e}^{\mathsf{T}}\mathbf{e}/(\sigma^2(n - r(\mathbf{X})))}} \sim t(n - r(\mathbf{X}), 0, 1)$$

• Standard Error SE $(\hat{\beta}_j) = \hat{\sigma} \sqrt{[(\mathbf{X}^T \mathbf{X})^{-1}]_{jj}}$

$$\frac{\hat{\beta}_j - \beta_j}{\mathsf{SE}(\hat{\beta}_j)} \sim t_{n-r(X)}$$

Inference

- ▶ 95% Confidence interval: $\hat{\beta}_j \pm t_{\alpha/2} SE(\hat{\beta}_j)$ use qt(a, df) for t_a quantile
- derive from pivotal quantity $t = (\hat{\beta}_j \beta_j)/SE(\hat{\beta}_j)$ where $P(t \in (t_{\alpha/2}, t_{1-\alpha/2})) = 1 \alpha$

Pivotal Quantities and Cl

Other Quantities

Linear Combinations: $\lambda^T \hat{\beta}$

Fitted Values

Unknown Mean: $\mu_i = \mathbf{x}_i^T \boldsymbol{\beta}$

Prostate Example

suppressPackageStartupMessages(library(lasso2))
library(knitr)
data(Prostate)
prostate.lm = lm(lpsa ~ ., data=Prostate)
ci=confint(prostate.lm); kable(ci, digits=2)

	2.5 %	97.5 %
(Intercept)	-1.91	3.25
lcavol	0.41	0.76
lweight	0.12	0.79
age	-0.04	0.00
lbph	-0.01	0.22
svi	0.28	1.25
lcp	-0.29	0.08
gleason	-0.27	0.36
pgg45	0.00	0.01

interpretation

- ► For a "1" unit increase in \mathbf{X}_j , expect \mathbf{Y} to increase by $\hat{\beta}_j \pm t_{\alpha/2} SE(\hat{\beta}_j)$
- for log transforms

$$\mathbf{Y} = \exp(\mathbf{X}eta + \epsilon) = \prod \exp(\mathbf{X}_jeta_j)\exp(\epsilon)$$

- ▶ if X = log(W_j) then look at 2-fold or % increases in W to look at multiplicative increase in median of Y
- ifcavol increases by 10% then we expect the median PSA to increase by 1.10^(CI) = (1.04, 1.075) or by 4.0 to 7.5 percent

For a 10% increase in cancer volume, we are 95% confident that the PSA levels will increase by approximately 4 to 7.5 percent.

Derivation

Next Class: Predictive Distributions