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Bayesian Shrinkage

Y | α,βs , φ ∼ N(1nα + Xsβs , In/φ)

βs | α, φ, τ , λ ∼ N(0, diag(τ 2)/φ)

p(α, φ) ∝ 1/φ

prior on τj
Scale Mixture of Normals (Andrews and Mallows 1974)
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Horseshoe
Carvalho, Polson & Scott propose

I Prior Distribution on

βs | φ, τ ∼ N(0p,
diag(τ 2)

φ
)

I τj | λ
iid∼ C+(0, λ2) (difference in CPS notation)

I λ ∼ C+(0, 1)
I p(α, φ) ∝ 1/φ)

In the case λ = φ = 1 and with canonical representation
Y = Iβ + ε

E [βi | Y] =

∫ 1

0
(1− κi )y∗i p(κi | Y) dκi = (1− E[κ | y∗i ])y∗i

where κi = 1/(1 + τ2i ) shrinkage factor

Half-Cauchy prior induces a Beta(1/2, 1/2) distribution on κi a
priori
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Horseshoe
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Prior Comparison (from PSC)
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Bounded Influence

Normal means case Yi
iid∼ N(βi , 1) (Equivalent to Canonical case)

I Posterior mean
E [β | y ] = y + d

dy logm(y)
where m(y) is the
predictive density under
the prior (known λ)

I HS has Bounded Influence:

lim
|y |→∞

d

dy
logm(y) = 0

I lim|y |→∞ E [β | y)→ y
(MLE)

I DE is also bounded
influence, but bound does
not decay to zero in tails
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R packages

The monomvn package in R includes

I blasso

I bhs

See Diabetes.R code
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Other Options

Range of other scale mixtures used

I Generalized Double Pareto (Armagan, Dunson & Lee)

τ2j | λ ∼ Exp(λ2/2)

λ ∼ Gamma(α, η)

βsj ∼ GDP(ξ = η/α, α)

f (βsj ) =
1

2ξ
(1 +

|βsj |
ξα

)−(1+α)

see http://arxiv.org/pdf/1104.0861.pdf

I Normal-Exponenetial-Gamma (Griffen & Brown 2005)
λ2 ∼ Gamma(α, η)

I Bridge - Power Exponential Priors (Stable mixing density)

See the monomvn package on CRAN

Choice of prior? Properties?

http://arxiv.org/pdf/1104.0861.pdf
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Properties for Penalty for Modal Estimates

Fan & Li (JASA 2001) discuss Variable selection via nonconcave
penalties and oracle properties

I Model Y = Xβ + ε

I Assume XTX = Ip (orthonormal) and ε ∼ N(0, In)

I Penalized Likelihood

1

2
‖Y − Ŷ‖2 +

1

2

∑
j

(βj − β̂j)2 +
∑
j

pλ(|βj |)

duality pλ(|β|) is negative log prior
I Requirements on penality

I Unbiasedness: for large |βj |
I Sparsity: thresholding rule sets small coefficients to 0
I Continuity: continuous in β̂j
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Conditions

Derivative of 1
2

∑
j(βj − β̂j)2 +

∑
j pλ(|βj |) is

sgn(βj)
{
|βj |+ p′λ(|βj |)

}
− β̂j

Conditions:

I unbiased: if p′λ(|β|) = 0 for large |β|; estimator is β̂j
I thresholding: min {|βj |+ p′λ(|βj |)} > 0 then estimator is 0 if

|β̂j | < min {|βj |+ p′λ(|βj |)}
I continuity: minimum of |βj |+ p′λ(|βj |) is at zero
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Choice?

I Lasso does not satisfy conditions

I GDP does
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Choice of Estimator & Selection?

I Posterior Mode (may set some coefficients to zero)

I Posterior Mean (no selection, just shrinkage) (Squared error
loss)

I Minimize L1 posterior loss E[|βj − a|] (Shrinkage and
Selection)

Bayesian Posterior does not assign any probability to βsj = 0

I Selection solved as a post-analysis decision problem

I Selection part of model uncertainty ⇒ add prior probability
that βsj = 0 and combine with decision problem

Remember all models are wrong, but some may be useful!



duke.eps

Choice of Estimator & Selection?

I Posterior Mode (may set some coefficients to zero)

I Posterior Mean (no selection, just shrinkage) (Squared error
loss)

I Minimize L1 posterior loss E[|βj − a|] (Shrinkage and
Selection)

Bayesian Posterior does not assign any probability to βsj = 0

I Selection solved as a post-analysis decision problem

I Selection part of model uncertainty ⇒ add prior probability
that βsj = 0 and combine with decision problem

Remember all models are wrong, but some may be useful!



duke.eps

Choice of Estimator & Selection?

I Posterior Mode (may set some coefficients to zero)

I Posterior Mean (no selection, just shrinkage) (Squared error
loss)

I Minimize L1 posterior loss E[|βj − a|] (Shrinkage and
Selection)

Bayesian Posterior does not assign any probability to βsj = 0

I Selection solved as a post-analysis decision problem

I Selection part of model uncertainty ⇒ add prior probability
that βsj = 0 and combine with decision problem

Remember all models are wrong, but some may be useful!



duke.eps

Choice of Estimator & Selection?

I Posterior Mode (may set some coefficients to zero)

I Posterior Mean (no selection, just shrinkage) (Squared error
loss)

I Minimize L1 posterior loss E[|βj − a|] (Shrinkage and
Selection)

Bayesian Posterior does not assign any probability to βsj = 0

I Selection solved as a post-analysis decision problem

I Selection part of model uncertainty ⇒ add prior probability
that βsj = 0 and combine with decision problem

Remember all models are wrong, but some may be useful!



duke.eps

Choice of Estimator & Selection?

I Posterior Mode (may set some coefficients to zero)

I Posterior Mean (no selection, just shrinkage) (Squared error
loss)

I Minimize L1 posterior loss E[|βj − a|] (Shrinkage and
Selection)

Bayesian Posterior does not assign any probability to βsj = 0

I Selection solved as a post-analysis decision problem

I Selection part of model uncertainty ⇒ add prior

probability
that βsj = 0 and combine with decision problem

Remember all models are wrong, but some may be useful!



duke.eps

Choice of Estimator & Selection?

I Posterior Mode (may set some coefficients to zero)

I Posterior Mean (no selection, just shrinkage) (Squared error
loss)

I Minimize L1 posterior loss E[|βj − a|] (Shrinkage and
Selection)

Bayesian Posterior does not assign any probability to βsj = 0

I Selection solved as a post-analysis decision problem

I Selection part of model uncertainty ⇒ add prior probability
that βsj = 0 and combine with decision problem

Remember all models are wrong, but some may be useful!


