Handling Missing Data: An Introduction STA 210: Regression Analysis

Olanrewaju Michael Akande

Department of Statistical Science, Duke University

October 18, 2018

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outline

Handling Missing Data: An Introduction

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

Missing Data

Introduction Types of Missing Data Types of Missing Data Mechanisms Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

3 Concluding Remarks

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

• Most real world datasets often contain missing values.

- Ideally, analysts should first decide on how to deal with missing data before moving on to analysis.
- One needs to make assumptions and ask tons of questions, for example,
 - why are the values missing?
 - what is the pattern of missingness?
 - what is the proportion of missing values in the data?
- As a Bayesian, one could treat the missing values as parameters and estimate them simultaneously with the analysis, but even in that case, he/she must still first answer the same questions.

Motivation

Olanrewaju Michael Akande

Missing Data

- Introduction
- Types of Missing Data
- Types of Missing Data Mechanisms
- Mathematical Formulation
- Strategies for Handling Missing Data
- Complete/Available Cases Analyses
- Single Imputation Multiple Imputation
- A simple illustration
- Concluding Remarks

- Simplest approach: complete/available case analyses delete cases with missing data. Often problematic because:
 - it is sometimes infeasible (small *n* large *p* problem) when we have a small number of observations but a large number of variables, we simply can not afford to throw away data, even when the proportion of missing data is small.
 - information loss even when we do not have the small *n*, large *p* problem, we still lose information when we delete cases.
 - biased results because the missing data mechanism is rarely random, features of the observed data can be completely different from the missing data.
- More principled approach: impute the missing data (in a statistically proper fashion) and analyze the imputed data.

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

Why should we care?

- Loss of power
 - can't regain lost power
- Any analysis must make an untestable assumption about the missing data
 - wrong assumption ⇒ biased estimates
- Some popular analyses with missing data get biased standard errors
 - resulting in wrong p-values and confidence intervals
- Some popular analyses with missing data are inefficient
 - confidence intervals wider than they need be

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation

Multiple Imputation

A simple illustration

Concluding Remarks

What to do: loss of power

Approach by design:

- minimise amount of missing data
 - good communications with participants, for example, patients in clinical trial, participants in surveys and censuses, etc
 - follow up as much as possible; make repeated attempts using different methods

イロト イロト イヨト イヨト 二日

- Reduce the impact of missing data
 - collect reasons for missing data
 - · collect information predictive of missing values

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

What to do: analysis

イロト イロト イヨト イヨト 二日

A suitable method of analysis would:

- Make the correct assumption about the missing data
- Give an unbiased estimate (under that assumption)
- Give an unbiased standard error (so that P-values and confidence intervals are correct)
- Be efficient (make best use of the available data)

BUT we can never be sure about what the correct assumption is \Rightarrow sensitivity analyses are essential!

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation

Multiple Imputation

A simple illustration

Concluding Remarks

How to approach the analysis

- Start by knowing:
 - extent of missing data
 - pattern of missing data (e.g. is X₁ always missing whenever X₂ is also missing?)
 - predictors of missing data and of outcome
- Principled approach to missing data:
 - identify a plausible assumption (needs discussion between statisticians and clinicians)
 - choose an analysis method that's valid under that assumption
- Some analysis methods are simple to describe but have complex and/or implausible assumptions

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation

A simple illustration

Concluding Remarks

Types of missing data

- Unit nonresponse: the individual has no values recorded for any of the variables (we will not focus on this today!).
- Item nonresponse: the individual has values recorded for at least one variable, but not all variables

Table 1: Unit nonresponse vs item nonresponse

	X_1	<i>X</i> ₂	Y
$Complete\ cases \to$	1	1	1
ſ		1	?
Item nonresponse	1	?	?
l		?	1
Unit nonresponse $ ightarrow$?	?	?

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

Types of missing data mechanisms

• Missing completely at random (MCAR):

- the reason for missingness does not depend on the values of the observed data or missing data
- rarely plausible in practice

• Missing at random (MAR):

- the reason for missingness may depend on the values of the observed data but not the missing data (conditional on the values of the observed data)
- most commonly assumed in analysis.
- Missing not at random (MNAR or NMAR):
 - the reason for missingness depends on the actual values of the missing (unobserved) data
 - usually the case in real analysis, but analysis can be complex!

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

Mathematical formulation

• Consider the classical multiple regression setting with

$$Y_i = \boldsymbol{\beta} \mathbf{X}_i + \boldsymbol{\epsilon}_i; \quad \boldsymbol{\epsilon}_i \sim N(0, \sigma_{\boldsymbol{\epsilon}}^2); \quad i = 1, \dots, n$$

where
$$\mathbf{X}_i = (1, X_{i1}, \dots, X_{ip})$$
 and $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)$.

- Suppose for now, that **Y** = (Y₁,..., Y_n) contains missing values but **X** = (**X**_i,..., **X**_n) is fully observed.
- We can separate Y into the observed and missing parts, that is,
 Y = (Y_{obs}, Y_{mis}). We can also do the same for X if it contains missing values.

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

Mathematical formulation

- Let $r_i = 1$ when Y_i is missing and $r_i = 0$ otherwise.
- Let $\mathbf{R} = (r_1, \dots, r_n)$, and θ , the parameters associated with \mathbf{R} . This is the vector of missing indicators for \mathbf{Y} .
- When **X** contains missing values, we can also create a vector of missing indicators for each variable in **X** with missing entries.

イロト イロト イヨト イヨト 二日

• Assume θ and $(\boldsymbol{\beta}, \sigma_{\epsilon}^2)$ are distinct.

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

Mathematical formulation

MCAR:

$$f(\mathbf{R}|\mathbf{Y},\mathbf{X}, heta,oldsymbol{eta},\sigma_{\epsilon}^2)=f(\mathbf{R}| heta)$$

MAR:

$$f(\mathbf{R}|\mathbf{Y},\mathbf{X},\theta,\boldsymbol{\beta},\sigma_{\epsilon}^{2}) = f(\mathbf{R}|\mathbf{Y}_{obs},\mathbf{X},\theta)$$

• MNAR:

$$f(\mathbf{R}|\mathbf{Y}, \mathbf{X}, \theta, \boldsymbol{\beta}, \sigma_{\epsilon}^2) = f(\mathbf{R}|\mathbf{Y}_{obs}, \mathbf{Y}_{mis}, \mathbf{X}, \theta)$$

Each type of mechanism has a different implication on the likelihood of the observed data \mathbf{Y}_{obs} , and the missing data indicator \mathbf{R} . However, we will not go into that much detail today.

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

Types of missing data mechanisms: how to tell?

So how can we tell the type of mechanism we are dealing with? In general, we don't know!!!

- Rare that data are MCAR (unless planned beforehand)
- Possible that data are MNAR
- Compromise: assume data are MAR if we include enough variables in model for the missing data indicator **R**.

Outline

イロト 不同 とくほと 不良 とう

14/37

Handling Missing Data: An Introduction

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

Missing Data

Introduction Types of Missing Data Types of Missing Data Mechanisms Mathematical Formulation

2 Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

3 Concluding Remarks

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation

A simple illustration

Concluding Remarks

Strategies for handling missing data

Item nonresponse:

- use complete/available cases analyses
- single imputation methods
- multiple imputation
- model-based methods
- Unit nonresponse:
 - weighting adjustments
 - model-based methods (identifiability issues!).

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation

A simple illustration

Concluding Remarks

Complete/available cases analyses

What can happen when using available case analyses with different types of missing data?

- MCAR: unbiased when disregarding missing data; variance increase (losing partially complete data)
- MAR: bias when missing data mechanism not modeled; variance increase (losing partially complete data)

イロト イロト イヨト イヨト 二日

NMAR: generally biased!

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses

Single Imputation

Multiple Imputation A simple illustration

Concluding Remarks

Single imputation methods

- Marginal/conditional mean imputation
- Nearest neighbor imputation:
 - hot deck imputation
 - cold deck imputation
- Use observation from one of the previous time periods (for panel data)
 - LOCF last observation carried forward
 - BOCF baseline observation carried forward

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses

Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

Plug in the variable mean for missing values.

- Point estimates of means OK under MCAR
- Variances and covariances underestimated.
- Distributional characteristics altered.
- Regression coefficients inaccurate.

Similar problems for plug-in conditional means.

Mean imputation

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses

Single Imputation Multiple Imputation

A simple illustration

Concluding Remarks

Nearest neighbor imputation

Plug in donors' observed values.

- Hot deck: for each nonrespondent, find a respondent who "looks like" the nonrespondent in the same dataset
- Cold deck: find potential donors in an external but similar dataset. For example, respondents from a 2016 election poll survey might serve as potential donors for nonrespondents in the 2018 version of the same survey.
- Common metrics: Statistical distance, adjustment cells, propensity scores.

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses

Single Imputation

Multiple Imputation A simple illustration

Concluding Remarks

Nearest neighbor imputation

イロト 不得 とうほう 不良 とう

3

20/37

- Point estimates of means OK under MAR.
- Variances and covariances underestimated.
- Distributional characteristics OK.
- Regression coefficients OK under MAR.

Olanrewaju Michael Akande

Missing Data

- Introduction
- Types of Missing Data
- Types of Missing Data Mechanisms
- Mathematical Formulation
- Strategies for Handling Missing Data
- Complete/Available Cases Analyses
- Single Imputation
- Multiple Imputation
- A simple illustration
- Concluding Remarks

Multiple imputation

- Fill in data sets *m* times with imputations.
- Analyze repeated data sets separately, then combine the estimates from each one.
- Imputations drawn from probability models for missing data.

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses

Single Imputation

Multiple Imputation

A simple illustration

Concluding Remarks

Imputed Datasets

Table 2: Imputed datasets: missing values are replaced with plausible values.

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses

Single Imputation Multiple Imputation

A simple illustration

Concluding Remarks

MI: inferences from multiply-imputed datasets

Rubin (1987)

- Estimand: Q = Q(X, Y)
- Q can be estimated using q, with variance u.
- In a regression setting, suppose $Q = \beta_0$, then $q = \hat{\beta}_0$ and $u = Var(\hat{\beta}_0)$.
- In each imputed dataset d_i , where $i = 1, \ldots, m$

$$q_i = Q(d_i)$$
$$u_i = U(d_i)$$

4 ロ ト 4 団 ト 4 豆 ト 4 豆 ト 豆 の Q (や 23/37

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses

Single Imputation Multiple Imputation

A simple illustration

Concluding Remarks

MI: quantities needed for inference

•
$$\bar{q}_m = \sum_{i=1}^m \frac{q_i}{m}$$

-

•
$$b_m = \sum_{i=1}^m \frac{(q_i - \bar{q}_m)^2}{m-1}$$

•
$$\bar{u}_m = \sum_{i=1}^m \frac{u_i}{m}$$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q (~ 24/37

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses

Single Imputation

Multiple Imputation A simple illustration

Concluding Remarks

MI: inferences from multiply-imputed data

• MI estimate of $Q: \bar{q}_m$

• MI estimate of variance is:

$$T_m = (1 + 1/m)b_m + \bar{u}_m$$

• Use t-distribution inference for Q

$$\bar{q}_m \pm t_{1-\alpha/2} \sqrt{T_m}$$

Notice that the variance incorporates uncertainty both from within and between the m datasets.

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses

Single Imputation

Multiple Imputation A simple illustration

A simple muscration

Concluding Remarks

MI: where should the imputations come from

So where should we get reasonable replacements for the missing values from? There are two general approaches:

- Sequential modeling
 - Estimate a sequence of conditional models (think separate regressions for each variable!)
 - Impute from each model
- Joint modeling
 - · Choose a multivariate model for all the data
 - Estimate the model
 - Impute from the joint model

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses

Single Imputation Multiple Imputation

A simple illustration

Concluding Remarks

MI: sequential regression models

Suppose the data include Y_1 , Y_2 , Y_3

- Step 1: fill in missing values by simulating values from regressions based on complete cases
- Step 2: regress $Y_1 | Y_2, Y_3$ using completed data
- Step 3: impute new values of Y1 from this model
- Step 4: repeat for $Y_2|Y_1, Y_3$ and $Y_3|Y_1, Y_2$
- Step 5: cycle through steps 2-4 times

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses

Single Imputation

Multiple Imputation

A simple illustration

Concluding Remarks

MI: existing software for sequential regression approach

Free software packages

- MICE for R and Stata
- MI for R
- IVEWARE for SAS

Can specify many types of conditional models and include constraints on values.

イロト 不同 とくほと 不良 とう

28/37

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses

Single Imputation

Multiple Imputation

A simple illustration

Concluding Remarks

MI: existing software for joint regression approach

イロト 不得 とうほう 不良 とう

э

29/37

A few examples of free software packages

- Multivariate normal data
 - R: NORM, Amelia II
 - SAS: proc MI
 - Stata: MI command
- Mixtures of multivariate normal distributions:
 - R: EditImpCont
- Multinomial data:
 - R: CAT log-linear model

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses

Single Imputation

Multiple Imputation A simple illustration

Concluding Remarks

MI: pros and cons

イロト 不得 とうほう 不良 とう

Э

30/37

• Advantages

- Straightforward estimation of uncertainty
- Flexible modeling of missing data
- Disadvantages (??)
 - Extra data sets to manage
 - Explicitly model-based

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

MI: a simple illustration

We will use a simple example created by Dr. Jerry Reiter

https://www2.stat.duke.edu/~jerry/missingdata.txt

Outline

Handling Missing Data: An Introduction

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

Missing Data

Introduction Types of Missing Data Types of Missing Data Mechanisms Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

3 Concluding Remarks

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

Concluding remarks

イロト 不得 トイヨト イヨト

33/37

- Ignoring missing data is risky.
- Single imputation procedures at best underestimate uncertainty and at worst fail to capture multivariate relationships.
- Multiple imputation recommended (or other model-based methods).
- We discussed MI for MAR data. When data are NMAR life much harder get experts in missing data on your team.

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

Concluding remarks

- Incorporate all sources of uncertainty in imputations, including uncertainty in parameter estimates.
- Want models that accurately describe the distribution of missing values.
- Important to keep in mind that imputation model used only for cases with missing data.
 - Suppose you have 30% missing values
 - Also, suppose your model is "80% good" ("20% bad")
 - Then, completed data are only "6% bad"

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding Remarks

Resources for learning more

- Little and Rubin (2002), *Statistical Analysis with Missing Data*, Wiley
- Schafer (1997), *Analysis of Incomplete Multivariate Data*, CRC Press
- Reiter and Raghunathan (2007), "The multiple adaptations of multiple imputation," *JASA*.

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses Single Imputation Multiple Imputation A simple illustration

Concluding

Acknowledgments

These slides contain materials adapted from courses taught by Dr. Jerry Reiter and Dr. Fan Li.

Olanrewaju Michael Akande

Missing Data

Introduction

Types of Missing Data

Types of Missing Data Mechanisms

Mathematical Formulation

Strategies for Handling Missing Data

Complete/Available Cases Analyses

Single Imputation

Multiple Imputation

A simple illustration

Concluding Remarks

Questions?

↓ □ ▶ ↓ □ ▶ ↓ E ▶ ↓ E ▶ ↓ E → Q (0)
37/37