
Statistics 360/601 – Modern Bayesian Theory

Alexander Volfovsky

Lecture 1 - August 28, 2018



Course information
Instructor: Alexander Volfovsky, Assistant Professor, Dept of
Statistical Science, alexander.volfovsky@duke.edu
Course Time: T/Th: 10:05 am - 11:20 am
Course webpage:
http://www2.stat.duke.edu/courses/Fall18/sta601.001/

and Sakai
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Course information: TAs
Office hours held in Old Chem 203
TA: Shuangjie Zhang
601 Lab 1 Time: F 10:05am - 11:20am
Office hours: M 3pm – 5pm.
TA: Jerry Chang
Office hours: Tu 3pm – 5pm
TA: Isaac Levine
360 Lab Time: F 10:05am - 11:20am
Office hours : Wed 10am – 12pm.
TA: Sheng Jiang
601 Lab 2 Time: F 1:25pm - 2:40pm.
Office hours : W 7pm – 9pm
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A word about enrollment
I The awesome: This is a very popular class.

I The good (for some of you): we are at essentially complete
capacity.
(undergrad section still has some space...)

I The complicated: There are currently over 40 people on
the (official) graduate class waitlist.

I The more complicated: There are many of you who
emailed me asking for permission to get in (I’m sorry if I did
not get back to you in a timely fashion)!

I The solution (for graduate students): I am happy to have
you in the class as well but it might not happen this
semester. Stick around on the waitlist as there might be
some shuffling/reshuffling after the first week. If you don’t
get in, don’t despair! This class is offered every semester.

I To all: thank you for being patient!
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Course information
I What is “Bayes”?

I General overview of some math.
I We will follow Hoff’s book – a chapter a week (give or take).
I Sprinkles of additional theory...
I Grading:

I HWs, labs and discussions (more on this in a bit) are worth
%20 (no late homeworks...)

I Quiz 1 (September 18)
I Midterm (October 11)
I Quiz 2 (approximately November 15)
I Final Exam (Friday, December 14 2pm - 5pm)
I Each quiz is worth 12.5%, Midterm is worth 25%, Final is

worth 30%. Miss a quiz or the midterm? That percentage
gets pushed to the final exam.

I Labs are there to help you! Come learn a concept or two
and some R from the TAs and then work on the
computational part of the homeworks.

I Post all questions to Piazza...
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Course information – continued
Required things

I R – we won’t grade code (though do turn it in!), but “pretty”
code is generally good practice.

I Come to class! – sometimes we will go beyond the book...
I Write in complete sentences... Show all of your steps...

Desired things
I LATEX– makes our life better if we can read everything.
I Do all of the readings before class and ask questions!

Would be awesome things
I A markdown language (like RMarkdown) that will produce

super-reproducible work. Essentially embedding all of your
R code into your LATEXcode.
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“What discussions? I thought this was math...”
I Efron, B., 1986. Why isn’t everyone a Bayesian?. The

American Statistician, 40(1), pp.1-5.
I Gelman, A., 2008. Objections to Bayesian statistics.

Bayesian Analysis, 3(3), pp.445-449.
I Diaconis, P., 1977. Finite forms of de Finetti’s theorem on

exchangeability. Synthese, 36(2), pp.271-281.
I Gelman, A., Meng, X.L. and Stern, H., 1996. Posterior

predictive assessment of model fitness via realized
discrepancies. Statistica sinica, pp.733-760.

I Dunson, D.B., 2018. Statistics in the big data era: Failures
of the machine. Statistics & Probability Letters, 136, pp.4-9.

I ...
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Course outline
On the website
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Today’s outline
I Data analysis and good statistical form.
I Some examples of where Bayes is used and why we might

want to use it.
I math/stats quiz (15 minutes) – mainly to gage where

everyone is.
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A little bit about modern data analysis

1. Exploratory Data Analysis (EDA)
2. Formal model building:

I Likelihood based methods
I Bayesian approaches (built on top of likelihood based

approaches)
3. Model checking and validation
4. Model refinement
5. Quantification of uncertainty when stating conclusions.

9



Operationalizing data analysis

Step 1. State the question.

????

Step k. Answer the question. (Make profit?)

10
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First steps with data

KNOW YOUR DATA
I Are there missing data? (is it random?)
I Is there non-response in your survey? (structural vs not)
I Do your variables have scales? (BA > HS but is

2×HS = BA?)
I Are there generic coding errors? (is person #9 really 162

years old?)

12



Exploring the data
I Plots, plots, plots...

Meta: ...okay, but because you said that, we’re breaking up.

13



Modeling and model checking

...essentially what this course is about...

14



Conclusions
I This is much harder than it looks.

I Did you answer the question you started with?
I Did you answer a different question?
I Did you go through a bunch of questions until you found

one with a “significant” answer?

15



Conclusions
I This is much harder than it looks.
I Did you answer the question you started with?

I Did you answer a different question?
I Did you go through a bunch of questions until you found

one with a “significant” answer?

15



Conclusions
I This is much harder than it looks.
I Did you answer the question you started with?
I Did you answer a different question?

I Did you go through a bunch of questions until you found
one with a “significant” answer?

15



Conclusions
I This is much harder than it looks.
I Did you answer the question you started with?
I Did you answer a different question?
I Did you go through a bunch of questions until you found

one with a “significant” answer?

15



16



17



18



19



20



Conclusions
I This is much harder than it looks.
I Did you answer the question you started with?
I Did you answer a different question?
I Did you go through a bunch of questions until you found

one with a “significant” answer?

I If someone else tries to run your code will they get the
same answer?

I Are your pictures seed-dependent?
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Lets take a quiz
I 10 minutes, no books, no internet, no “phone-a-friend”...
I (Not) graded – I want to see where everyone is on their

math and stats...
I Don’t worry about not knowing the answers – and if you

know all the answers there’s still lots to learn!
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What is “Bayes”?
A collection of methods that provide

I parameter estimates with good statistical properties;
I parsimonious descriptions of observed data;
I predictions for missing data and forecasts of future;
I a computational framework for model estimation, selection

and validation.

Mathematically: Y is the sample space, y is a dataset, Θ is a
parameter space and θ is a parameter of interest.
Idealized Bayesian learning:

1. For each θ ∈ Θ specify a prior distribution p(θ) describing
our beliefs about θ being the true population parameter.

2. For each θ ∈ Θ, y ∈ Y specify a sampling distribution
p(y|θ) that describes our belief that y is the outcome of a
study with true parameter θ.

3. After observing y, for each θ ∈ Θ our posterior distribution
p(θ|y) describes the belief about θ having observed y.
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Bayes is induction
Idealized Bayesian learning:

1. For each θ ∈ Θ specify a prior distribution p(θ) describing
our beliefs about θ being the true population parameter.

2. For each θ ∈ Θ, y ∈ Y specify a sampling distribution
p(y|θ) that describes our belief that y is the outcome of a
study with true parameter θ.

3. After observing y, for each θ ∈ Θ our posterior distribution
p(θ|y) describes the belief about θ having observed y.

To go from Step 1 to Step 3 we need to update our beliefs. We
do this using Bayes’ rule

p(θ|y) =
p(y|θ)p(θ)∫

Θ p(y|θ̃)p(θ̃)d θ̃

24
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Example: Rare events

I Number of heads for a biased coin.
I Number of infected individuals in a city.
I Number of worldwise terrorism incidents.
I Number of earthquakes of magnitude over 7.
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Example: Rare events – Data analysis

Step 1. State the question:

What is the prevalence of an infectious disease in a small
city?
Why? High prevalence means more public health
precautions are recommended.

Step 2. Collect the data.
A small random sample of 20 individuals are checked.

Step 3. Explore the data.
y records the total number of infections in the sample.
Sample space is any whole number from 0 to 20.

26
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Sample space is any whole number from 0 to 20.
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Example: Rare events – Data analysis
Step 4. Formulate and state a modeling framework.

I Parameter of interest: θ is the fraction of infected individuals
in the city.
Parameter space is numbers between 0 and 1.
Mathematically: Θ = [0,1], Y = {0,1, . . . ,20}.

I Sampling model: Prior to sampling let Y denote the
unknown number of infected individuals in the sample.
If we know θ a reasonable model for Y would be
binomial(20, θ).

I We write Y |θ ∼ binomial(20, θ)
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Example: Rare events – Data analysis
Step 4. Formulate and state a modeling framework (continued).

I Prior specification: information from previous studies —
infection rate in “comparable cities” ranges from 0.05 to
0.20 with an average of 0.10.

I What is a good prior? Most of the weight of p(θ) is in the
interval (0.05,0.20) and the expected value of θ is close to
0.10.

I Possible priors include a beta prior which has expectation
a/(a + b) and “most probable value” of
(a− 1)/(a− 1 + b− 1).
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I Expectation: E[θ] = 2/(2 + 20)

I mode[θ] = (2−1)/(2−1+20−1)

I Pr(θ < 0.1) ≈ 0.6
I Pr(0.05 < θ < 0.20) ≈ 0.66
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Example: Rare events – Data analysis
Step 4. Formulate and state a modeling framework (continued).

I Posterior distribution for the model:

Y |θ ∼ binom(n, θ) θ ∼ beta(a,b)

is given by

θ|Y = y ∼ beta(a + y,b + n− y)
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Example: Rare events – Data analysis
Step 4. Formulate and state a modeling framework (continued).

I Posterior distribution for the model:

Y |θ ∼ binom(n, θ) θ ∼ beta(a,b)

is given by

θ|Y = y ∼ beta(a + y,b + n− y)

0

5

10

15

0.00 0.25 0.50 0.75 1.00
theta

va
lu

e

variable

prior

posterior

29



Example: Rare events – Data analysis
Step 5. Check your models.

I Sensitivity analysis! A little more in depth...

E[θ|Y = y] =
a + y

a + b + n

=
n

a + b + n
y
n +

a + b
a + b + n

a
a + b

=
n

w + nȳ +
w

w + nθ0

I Interpretation: θ0 = a/(a + b) is the prior expectation.
w = a + b is some notion of prior confidence.

I Posterior expectation is a weighted average of the prior
expectation and the observed sample mean ȳ.
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Example: Rare events – Data analysis
Step 5. Check your models continued.

I Compare performance of posterior mean and posterior
probability that θ < 0.1.

I We can translate back to a and b via:
a = wθ0, b = w(1− θ0).
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I What can we learn: People with weak prior beliefs (low w)
or low prior expectations (small θ0) are generally at least
90% certain that the infection rate is below 0.10.

I High degrees of certainty require high certainty in the prior.
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Example: Rare events – Data analysis

Step 6. Answer the question.

I Lets say we are comfortable with our prior then we have
that the posterior for θ given the event Y = 0 is beta(2,40).

I It is to the left of p(θ) because the observation Y = 0
provides evidence of a low value of θ.

I It is more peaked than p(θ) because it combines
information and so contains more information that p(θ)
alone.

I The posterior expectation is 0.048
I The posterior mode is 0.025.
I The posterior probability of θ < 0.10 is 0.93.
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