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Multivariate normal code

>
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+
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+
+
+
+
+
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+

rmvnorm <- function(n,mu,Sigma) {

# n = sample size

# mu = p dimensional vector of means

# Sigma = p x p symmetric positive

# definite covariance matrix
p<-length(mu)
res<-matrix(0,nrow=n,ncol=p)
if( >0 & p>0 ) {
E<-matrix(rnorm(n*p),n,p)
res<-t( t(E)*%chol(Sigma)) +c(mu))

b

res



Multivariate normal likelihood code

> ldmvnorm<-function(y,mu,Sig){ # log mvn density
+ c( -(length(mu)/2)*log(2*pi) -.5%log(det(Sig)) -
+ .Bxt (y-mu) %*Y solve(Sig) ¥%xJ (y—muw) )



Wishart and Inverse Wishart code

> ### sample from the Wishart distribution
> rwish<-function(n,nu0,S0)

+ {

+ 880 <- chol(S0)

+  S<-array( dim=c( dim(S0),n ) )

+ for(i in 1:n)

+ o

+ Z <- matrix(rnorm(nu0 * dim(S0) [1]),
+ nrow = nu0, ncol = dim(S0) [1]) %*% sSO
+ SL,,il<- t(Z)%*hZ

+ X

+ S[,,1:n]

+ 7



Wishart and Inverse Wishart code

> ### sample from the inverse Wishart distribution
> rinvwish<-function(n,nu0,iS0)

+ {

+ sLO <- chol(iS0)

+  S<-array( dim=c( dim(iSO0),n ) )

+ for(i in 1:n)

+ o

+ Z <- matrix(rnorm(nu0 * dim(iS0) [1]),
+ nrow = nu0, ncol = dim(iS0) [1]) %x% sLO
+ S[,,i]1<- solve(t(Z)%*%Z)

+ X

+ S[,,1:n]

+ 7
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» Twenty two children take a reading comprehension test before
and after a training session.
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0.5



Data analysis

>

Twenty two children take a reading comprehension test before
and after a training session.

The test is graded on a 0 to 100 scale.

We think it is jointly normal(6, X).

Need to specify a prior for 8 ~ N(uo, o) and

Y~ iW(vo, Sy t)

Prior for the mean: exam is designed to have a mean of 50, so
o = (50, 50) seems reasonable as a prior expectation.

Want to make sure 6 is unlikely to be bigger that 100 or
smaller than 0: \}; = A2, = (50/2)2 puts that probability at
0.05.

The two exams are measuring the same thing so 61 and 65
should be close: maybe the prior correlation between then is
0.5

Know a little less about X but similar rational to the choices
for Ag applies. Let So = Ag and make it loosely centered
around that point so let vp = p+2 =4.



Gibbs sampler — set up

# read the data

Y <- dget(readpp.dat)

# set prior for the mean

mu0<-c(50,50)

LO<-matrix( c(625,312.5,312.5,625) ,nrow=2,ncol=2)
# set prior for the covariance

nu0<-4

SO<-matrix( c(625,312.5,312.5,625) ,nrow=2,ncol=2)
# compute statistics for faster updates
n<-dim(Y) [1] ; ybar<-apply(Y,2,mean)
Sigma<-cov(Y) ; THETA<-SIGMA<-NULL

YS<-NULL

set.seed(1)
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Gibbs sampler — for loop

> for(s in 1:5000)

+{

+ + 4+ + + +

+

#

+ + + + + 4+

###update theta

Ln<-solve( solve(LO) + n*solve(Sigma) )

mun<-Ln%*%( solve(LO)%*%mu0 + n*solve(Sigma)’%*%ybar )
theta<-rmvnorm(1,mun,Ln)

###update Sigma

Sn<- SO + ( t(Y)-c(theta) )%*%t( t(Y)-c(theta) )
Sigma<-rinvwish(1l,nu0+n,solve(Sn))

Sigma<-solve( rwish(1, nuO+n, solve(Sn)) )

### save results

THETA<-rbind (THETA,theta); SIGMA<-rbind(SIGMA,c(Sigma))
YS<-rbind (YS,rmvnorm(1l,theta,Sigma))

#H##

cat(s,round(theta,2) ,round(c(Sigma),2),"\n")



What can we report?

» Might be interested in the probability that the population
average increases: P(62 > 01|y1,...,yn) = 0.99

> Might be interested in whether a randomly selected new child
do better on the second test: P(Y2 > Yilyi,...,yn) =0.71

» What do these two results mean? Why are they so different?

» Note that E[f2 — 61]y1, ..., ¥n] = 6.6 which is pretty small in
the grand scheme of things.

» The first probability captures ANY difference in the fs.

» The second probability captures individual uncertainty about
testing.



Missing data example
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Data look essentially normal. We could model them as
Y ~ N(6,X)



Missing data example

glu bp skin bmi

1 8 68 28 30.20
2 195 70 33 NA
3 77 82 NA 3580
4 NA 76 43 4790
5 107 60 NA NA
6 97 76 27 NA
7 NA 58 31 3430
8 193 50 16 25.90
9 142 80 15 NA
10 128 78 NA 43.30

Problem: what is p(y»|6,%)??
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Gibbs with missing data

> for(s in 1:5000)
+{
#update theta...
#update Sigma...
###update missing data

for(i in 1:n)

{

b <- ( 0[i,]==0)

a <- (0[i,]==1)

iSa<- solve(Sigmala,al)

beta.j <- Sigmalb,al’*%iSa

s2.j <- Sigmalb,b] - Sigmalb,al’*%iSa%*%Sigmala,b]
theta.j<- theta[bl+beta.j%*%(t(Y.full[i,a])-thetala])
Y.full[i,b] <- rmvnorm(1l,theta.j,s2.j )

+ + + + + + + + + + + o+ +

+
-
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