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A little bit about our data
https://nces.ed.gov/surveys/els2002/

>

Nationally representative, longitudinal study of 10th graders in
2002 and 12th graders in 2004

Students followed throughout secondary and postsecondary
years

Surveys of students, their parents, math and English teachers,
and school administrators

Student assessments in math (10th & 12th grades) and
English (10th grade)

2002 Focus: What are students’ trajectories from the
beginning of high school into postsecondary education, the
workforce, and beyond?

2002 Focus: What are the different patterns of college access
and persistence that occur in the years following high school
completion


https://nces.ed.gov/surveys/els2002/

A little bit about our data

Table 1. Percentage of spring 2002 high school sophomores, by high school completion status

and select student characteristics: 2006

Received Received GED  Enrolled in high school No diploma; not
high school or other or working toward  enrolled or working
cl diploma toward
Total 87.8 39 32 46
Sex
Female 90.0 32 26 38
Male 85.7 47 38 54
Race/ethnicity’
American Indian or Alaska Native 747 93 44 1.7
Asian or Pacific Islander 9256 21 26 24
Black or African American 82.2 46 6.0 57
Hispanic or Latino 80.9 43 43 10.0
White 911 35 22 29
More than one race 85.1 57 4.0 5.0
Family income
$0-20,000 78.0 6.2 5.6 9.1
$20,001-50,000 85.3 45 39 6.0
$50,001-100,000 92.1 3.0 2.1 25
$100,001 or more 955 20 13 09
Parental education
High school or less 80.4 46 51 9.1
Some college 88.1 46 32 37
Bachelor's degree 927 28 20 23
Graduate/professional degree 934 28 16 19
Native language®
English 88.6 4.0 31 38
Non-English 828 32 37 95
School sector
Public 87.0 4.1 34 49
Catholic 98.1 13 02 03
Other private 9.2 21 08 07
Educational expectation in 10th grade
High school or less 625 10.1 88 173
Some college 79.0 72 56 76
Bachelor's degree 918 30 24 26
1.7 15 17

Graduatelprofessional degree 94.8



What are we studying?
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> Test scores for 10th graders in 100 urban high schools.

» Ordered according to school averages.



More about the data
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» Looks “smooth” (this is a histogram of averages).

» Normal model seems reasonable.



Are all data points created equal?
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» We should trust averages based on more data points.
> Essentially: if 6; = 0 then E[Y|0;,0%] = 6 but
Var[Y |theta;, 0% = 2 /n;



What happens within a school?
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» Two of the larger schools (n37 = 32 and n; = 31)

» Also looks pretty normal.



Sampling model?

» Student i within school j: Yj|0;, 0% ~ normal(0;,5?)

Frequency
0 2 4 6 8
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scores.

» Mean of school j: 6|, 7% ~ normal(u, 72)
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Prior setup

» Need to specify prior parameters for p(u), p(c?), p(72).

» Within school variance: 0(2) = 100 because the test is designed
to have this variance. vy = 1 for a weakly concentrated prior.

» Between school variance: Tg =100 and 79 = 1 for the same
reason.

» School means: g = 50 because the test is designed to have
this mean, 73 = 25 lets the actual school mean move a bit
but not too much.



Gibbs sampler

Sample (1)~ p(uf6f?, ..., 05, 72))
Sample 72(s+1) ~ p(7-2|9§5)’ N R CE )
Sample 0'2(S+1) ~ p(0.2|05-5)7 el 9%?)’-)/17 o 7_ym)

o po=

For each 1 < j < m sample
1 S S S
91(5+ ) P(Hj\ﬂ( +1) 72(s+1) 52 H),yj)

Possible implementation orders:
» Dol 23,4
» Do 2, 1, 3, 4 (with obvious changes)
> .

> (i1, i, I3, i4) ~ ™ where 7



MCMC diagnostics

1. Stationarity plots
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2. Lag-t autocorrelation

Lag-1 for u, sigma®, 72 are 0.15, 0.053 and 0.312.
3. Effective sample sizes

For 11, sigma?, 72: 3706, 4499, and 2503.
4. Monte Carlo standard errors

For p, sigmaz,Tz: 0.009, 0.04, 0.09



Posterior summaries

Marginal posterior distributions
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> Posterior means for p, sigma, T are 48.12, 9.21, 4.97.

> 95% of scores within a classroom are within ~ 4 x 9.21 ~ 37
points of each other.

» 05% of the average classroom scores are within
~ 4 x 4.97 ~ 20 points of each other.
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Why hierarchical models?

» Shrinkage!
» Conditioning on 1,72, 02 and the data we have

yini/o® + u/?
El6:1v; 2 21 _ Yl
[0;lyj, 1, 7%, 0] nj/o? + 1/72

» nj small then E[f;|...] is pulled away from y; towards to s.

5 10 15 20 25 30
sample size
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Does this change inference?

> It can — we are interested in ranking the schools based on
their students’ performances.

> If we give everyone the test in each school it makes sense to
compare posterior expectations E[0;|y1, ..., Ym].

» Almost the same inference as from ;...
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Does this change inference?
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> Jas = 40.18, ngs = 21, E[fae|...] = 41.31

> go = 38.76, ngy = 5, E[fga|...] = 42.53
» Removing lowest scores: y16 = 40.9, ygo = 41.99

14



So many parameters...

» Sometimes setting hyperparameters is hard.

» Consider our sampling model:

p(yiil0;, o) p(0)| 1, )

> The marginal of the data is
/P(yﬁ|9j7‘72)p(‘9j’%72)d6j

» We can estimate y, 72 from that — this the beginning of an
Empirical Bayes procedure.

» EB provides inference for parameters of interest 6; but ignores
uncertainty about hyperparameters like 72.

» Empirical Bayes estimators: Based on the posterior
p(O;lyj, i, 72, 82).
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