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Monte Carlo



Monte Carlo approximation

Want to compute
Eloly) = [ op(6ly)ot

without worrying about actual integration...

> Let 0 be a parameter of interest

> Let y1,...,Yn be numerical values of a sample from a
distribution p(y1,...,yn|0)

> Let 61,...,0° ~ p(Oly1,...,y,) beiid samples from the
posterior.

» We estimate our posterior quantity of interest as 1/S 3" g(#")



Full on example

» Data: birthrates and education information for women.

» Question: are there any differences in the bithrates of women
without and with bachelor’s degrees?

» 111 women without bachelors gave birth to 217 children.
> 44 women with bachelors degrees gave birth to 66 children.

» Model: Poisson with a mean parameter 8; for women without
a bachelors, and 0> with a bachelors.

» Prior: 61,02 ~ gamma(a=2,b=1)

» Posterior: p(61] Z}ill Yi1 = 217) is gamma(219, 11) and
p(fa] 23, Vi = 66) is gamma(68,45).

» Want to compute p(61 > 62| > Yi1 =217, Yi» = 66) and
p(Y1> Yo| S Yii = 217,3 Yio = 66).



Birthrates example

Magic answers to our questions:

p(b1 > 02| Y Yin =217, Yip = 66) = 0.97

p(Y1> Ya| Y Yin =217, Yip = 66) = 0.48

As you might imagine these are some ... sums and integrals.



Monte Carlo to the rescue

a<-2 ; b<-1
syl<-217 ; mni<-111
8y2<-66 ; n2<-44

>

>

>

>

> thetal.mc<-rgamma(10000,a+syl, b+nl)
> theta2.mc<-rgamma(10000,a+sy2, b+n2)
>
>
>
>
>
>

y1.mc<-rpois(10000,thetal.mc)
y2.mc<-rpois (10000, theta2.mc)

mean(thetal.mc>theta2.mc)
[1] 0.9745
>
> mean(yl.mc>y2.mc)
[1] 0.4768



Buffon's needle

A crazy man wants to estimate 7 and all he has is an infinite
carpet and a needle...

Wiki Images.
Practical example:
http://mste.illinois.edu/activity/buffon/


http://mste.illinois.edu/activity/buffon/

Buffon's needle

» Real world: throw a bunch of needles and estimate.

» Computer world: pretend to throw a bunch of needles and
estimate.

» Sample (x, 6) uniformly from [0, t/2] x [0, 7/2].
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Monte Carlo does not solve everything



Monte Carlo failure
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Vanilla MC vs Importance sampling

» Want to estimate | = fol x3dx.
> Method 1:
1. Sample vy, ..., us ~ Unif(0,1)
2. Estimate | = >_(u;)?/S
> Method 2:
1. Sample by, ..., bs ~ Beta(a, b)
2. Estimate | = >_((b;)®/dbeta(b;, a, b))/S
» Which one is better?
(note that the optimal choice for importance sampling has the
density g*(x) = 4x3 — obviously x3/g* = 1/4 is the answer)
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Vanilla MC vs Importance sampling
Setting a = 10, b =10
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Vanilla MC vs Importance sampling
Settinga=1/2,b=1/2
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Vanilla MC vs Importance sampling

zooming in

Setting a = 10,b =10
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Vanilla MC vs Importance sampling

zooming in

Setting a=1/2,b=1/2
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Vanilla MC vs Importance sampling

So much better... g(x) = 3x?
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Vanilla MC vs Importance sampling

Why is there a difference?
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Rejection sampling
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Consistent parameters??

> Let the data come from Y ~Geometric(p).

v

Recall that a geometric variable has pdf
Pr(Y = k) = (1 - p)fp

and it captures a success on the k + 1 trial after k failures.

v

The mean of a geometric is (1 — p)/p.

v

Let the model we think the data comes from be Poisson(6).

v

Let the prior be a Gamma(a, ).
We know the posterior is Gamma(a + > yi, 8 + n).

v
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Consistent parameters??
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Consistent parameters??
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Posterior Predictive Checks
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Posterior predictive checking

Lets look at the data (from the book).
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Data: twice as many women with 2 children as with 1.
Posterior predictive: fewer women with 2 children than with 1.
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Posterior predictive checking

t.mc <- t2.mc <-NULL

for(s in 1:10000) {
thetal<-rgamma(l,a+sum(yl), b+length(yl))
y1.mc<-rpois(length(yl),thetal)

t.mc <- c(t.mc,mean(yl.mc))
t2.mc<-c(t2.mc,sum(yl.mc==2)/sum(yl.mc==1))
}
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Posterior predictive checking
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Where t(y) is the ratio of 2's to 1's in a dataset.
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Posterior predictive checking

> Lets look at the data (Gelman, Meng and Stern).
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Posterior predictive checking

> Lets look at the data (Gelman, Meng and Stern).

» Gelman (1990,92) describe positron emission tomography
experiment.

» Goal: Estimate the density of a radioactive isotope in a
cross-section of the brain.

» 2-d image is estaimte from gamma-ray counts in a rigng of
detectors around the head.

> n bins of counts based on positions of detectors — 6 million
counts.

» Bin count y; are modeled as independent Poisson(6;)

» © = Ag + r where g is the unknown image, A is a known
linear operator and r are known corrections.

» A, g and r are non-negative.

» This is an easy problem without the constraint.
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Posterior predictive checking

» Poisson noise + model problems makes exact non-negative
solutions impossible.
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Posterior predictive checking

>

Poisson noise + model problems makes exact non-negative
solutions impossible.

Use an estimate g and capture the discrepancy between y and
6 = Ag,.

Consider x? discrepancy.

. 0.2
xe(yid) = Yo Yt

» Fitting to real data: y with n = 22464.
» The best-fit non-negative image g was not an exact fit leading

to the discrepancy between y and 0 to be X2(y; GA) ~ 30, 000.
Reject the model!
Possible failures:

» Error in the specification of A, r

» Lack of independence

» super-Poisson variance in the counts
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Posterior predictive checking

>

Poisson noise + model problems makes exact non-negative
solutions impossible.

Use an estimate g and capture the discrepancy between y and
6 = Ag,.

Consider x? discrepancy.

. 0.2
xe(yid) = Yo Yt

» Fitting to real data: y with n = 22464.
» The best-fit non-negative image g was not an exact fit leading

to the discrepancy between y and 0 to be X2(y; GA) ~ 30, 000.

Reject the model!
Possible failures:
» Error in the specification of A, r
Lack of independence
super-Poisson variance in the counts
Error from discretizing the continuous g.

vV vVvYyy
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Posterior predictive checking

» The “critically bad” level of X2(y; ) is n+ 2v/2n ~ 23,000.
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Posterior predictive checking

» The “critically bad” level of X2(y; ) is n+ 2v/2n ~ 23,000.
> We reassess and change the model.

» We get a x? discrepancy that is 22,000 or even 20, 000.

» Should we just accept this new model?

» No.

v

Be skeptical!



