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Monte Carlo
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Monte Carlo approximation

Want to compute

E [θ|y ] =

∫
θp(θ|y)dθ

without worrying about actual integration...

I Let θ be a parameter of interest

I Let y1, . . . , yn be numerical values of a sample from a
distribution p(y1, . . . , yn|θ)

I Let θ1, . . . , θS ∼ p(θ|y1, . . . , yn) be iid samples from the
posterior.

I We estimate our posterior quantity of interest as 1/S
∑

g(θi )
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Full on example

I Data: birthrates and education information for women.

I Question: are there any differences in the bithrates of women
without and with bachelor’s degrees?

I 111 women without bachelors gave birth to 217 children.

I 44 women with bachelors degrees gave birth to 66 children.

I Model: Poisson with a mean parameter θ1 for women without
a bachelors, and θ2 with a bachelors.

I Prior: θ1, θ2 ∼ gamma(a = 2, b = 1)

I Posterior: p(θ1|
∑111

i=1 Yi ,1 = 217) is gamma(219, 11) and
p(θ2|

∑44
i=1 Yi ,2 = 66) is gamma(68, 45).

I Want to compute p(θ1 > θ2|
∑

Yi1 = 217,
∑

Yi2 = 66) and
p(Ỹ1 > Ỹ2|

∑
Yi1 = 217,

∑
Yi2 = 66).
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Birthrates example

Magic answers to our questions:

p(θ1 > θ2|
∑

Yi1 = 217,
∑

Yi2 = 66) = 0.97

p(Ỹ1 > Ỹ2|
∑

Yi1 = 217,
∑

Yi2 = 66) = 0.48

As you might imagine these are some ... sums and integrals.
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Monte Carlo to the rescue

> a<-2 ; b<-1

> sy1<-217 ; n1<-111

> sy2<-66 ; n2<-44

>

> theta1.mc<-rgamma(10000,a+sy1, b+n1)

> theta2.mc<-rgamma(10000,a+sy2, b+n2)

>

> y1.mc<-rpois(10000,theta1.mc)

> y2.mc<-rpois(10000,theta2.mc)

>

>

> mean(theta1.mc>theta2.mc)

[1] 0.9745

>

> mean(y1.mc>y2.mc)

[1] 0.4768

5



Buffon’s needle

A crazy man wants to estimate π and all he has is an infinite
carpet and a needle...

Wiki Images.
Practical example:

http://mste.illinois.edu/activity/buffon/
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Buffon’s needle

I Real world: throw a bunch of needles and estimate.

I Computer world: pretend to throw a bunch of needles and
estimate.

I Sample (x , θ) uniformly from [0, t/2]× [0, π/2].
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Monte Carlo does not solve everything



Monte Carlo failure
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Vanilla MC vs Importance sampling

I Want to estimate I =
∫ 1
0 x3dx .

I Method 1:

1. Sample u1, . . . , uS ∼ Unif (0, 1)
2. Estimate Î =

∑
(ui )

3/S

I Method 2:

1. Sample b1, . . . , bS ∼ Beta(a, b)
2. Estimate Î =

∑
((bi )

3/dbeta(bi , a, b))/S

I Which one is better?

(note that the optimal choice for importance sampling has the
density g?(x) = 4x3 – obviously x3/g? = 1/4 is the answer)
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Vanilla MC vs Importance sampling

Setting a = 10, b = 10
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Vanilla MC vs Importance sampling

Setting a = 1/2, b = 1/2
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Vanilla MC vs Importance sampling
zooming in

Setting a = 10, b = 10
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Vanilla MC vs Importance sampling

So much better... g(x) = 3x2
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Vanilla MC vs Importance sampling

Why is there a difference?
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Rejection sampling
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Consistent parameters??

I Let the data come from Y ∼Geometric(p).

I Recall that a geometric variable has pdf

Pr(Y = k) = (1− p)kp

and it captures a success on the k + 1 trial after k failures.

I The mean of a geometric is (1− p)/p.

I Let the model we think the data comes from be Poisson(θ).

I Let the prior be a Gamma(α, β).

I We know the posterior is Gamma(α +
∑

yi , β + n).
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Consistent parameters??
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Consistent parameters??
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Posterior Predictive Checks
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Posterior predictive checking

Lets look at the data (from the book).
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Data: twice as many women with 2 children as with 1.
Posterior predictive: fewer women with 2 children than with 1.
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Posterior predictive checking

> t.mc <- t2.mc <-NULL

> for(s in 1:10000) {

> theta1<-rgamma(1,a+sum(y1), b+length(y1))

> y1.mc<-rpois(length(y1),theta1)

> t.mc <- c(t.mc,mean(y1.mc))

> t2.mc<-c(t2.mc,sum(y1.mc==2)/sum(y1.mc==1))

> }
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Posterior predictive checking
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Where t(y) is the ratio of 2’s to 1’s in a dataset.
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Posterior predictive checking

I Lets look at the data (Gelman, Meng and Stern).

I Gelman (1990,92) describe positron emission tomography
experiment.

I Goal: Estimate the density of a radioactive isotope in a
cross-section of the brain.

I 2-d image is estaimte from gamma-ray counts in a rigng of
detectors around the head.

I n bins of counts based on positions of detectors — 6 million
counts.

I Bin count yi are modeled as independent Poisson(θi )

I Θ = Ag + r where g is the unknown image, A is a known
linear operator and r are known corrections.

I A, g and r are non-negative.

I This is an easy problem without the constraint.
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Posterior predictive checking

I Poisson noise + model problems makes exact non-negative
solutions impossible.

I Use an estimate ĝ and capture the discrepancy between y and
θ̂ = Aĝr .

I Consider χ2 discrepancy.

X 2(y ; θ̂) =
∑ (yi − θ̂i )2

θ̂i
I Fitting to real data: y with n = 22464.
I The best-fit non-negative image ĝ was not an exact fit leading

to the discrepancy between y and θ̂ to be X 2(y ; θ̂) ≈ 30, 000.
I Reject the model!
I Possible failures:

I Error in the specification of A, r
I Lack of independence
I super-Poisson variance in the counts
I Error from discretizing the continuous g .
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I Use an estimate ĝ and capture the discrepancy between y and
θ̂ = Aĝr .
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Posterior predictive checking

I The “critically bad” level of X 2(y ; θ̂) is n + 2
√

2n ≈ 23, 000.

I We reassess and change the model.

I We get a χ2 discrepancy that is 22, 000 or even 20, 000.

I Should we just accept this new model?

I No.

I Be skeptical!

27



Posterior predictive checking

I The “critically bad” level of X 2(y ; θ̂) is n + 2
√

2n ≈ 23, 000.

I We reassess and change the model.

I We get a χ2 discrepancy that is 22, 000 or even 20, 000.

I Should we just accept this new model?

I No.

I Be skeptical!

27



Posterior predictive checking

I The “critically bad” level of X 2(y ; θ̂) is n + 2
√

2n ≈ 23, 000.

I We reassess and change the model.

I We get a χ2 discrepancy that is 22, 000 or even 20, 000.

I Should we just accept this new model?

I No.

I Be skeptical!

27



Posterior predictive checking

I The “critically bad” level of X 2(y ; θ̂) is n + 2
√

2n ≈ 23, 000.

I We reassess and change the model.

I We get a χ2 discrepancy that is 22, 000 or even 20, 000.

I Should we just accept this new model?

I No.

I Be skeptical!

27



Posterior predictive checking

I The “critically bad” level of X 2(y ; θ̂) is n + 2
√

2n ≈ 23, 000.

I We reassess and change the model.

I We get a χ2 discrepancy that is 22, 000 or even 20, 000.

I Should we just accept this new model?

I No.

I Be skeptical!

27



Posterior predictive checking

I The “critically bad” level of X 2(y ; θ̂) is n + 2
√

2n ≈ 23, 000.

I We reassess and change the model.

I We get a χ2 discrepancy that is 22, 000 or even 20, 000.

I Should we just accept this new model?

I No.

I Be skeptical!

27


