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Monte Carlo
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Monte Carlo approximation

Want to compute

E [✓|y ] =
Z

✓p(✓|y)d✓

without worrying about actual integration...

I Let ✓ be a parameter of interest

I Let y1, . . . , yn be numerical values of a sample from a
distribution p(y1, . . . , yn|✓)

I Let ✓1, . . . , ✓S ⇠ p(✓|y1, . . . , yn) be iid samples from the
posterior.

I We estimate our posterior quantity of interest as 1/S
P

g(✓i )
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Consistent parameters??

I Let the data come from Y ⇠Geometric(p).

I Recall that a geometric variable has pdf

Pr(Y = k) = (1� p)kp

and it captures a success on the k + 1 trial after k failures.

I The mean of a geometric is (1� p)/p.

I Let the model we think the data comes from be Poisson(✓).

I Let the prior be a Gamma(↵,�).

I We know the posterior is Gamma(↵+
P

yi ,� + n).
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Consistent parameters??

0 1 2 3 4 5 6

0
2

4
6

8

x, n= 10

m
ea

n=
 1

.5
5

0 1 2 3 4 5 6

0
2

4
6

8

x, n= 100

m
ea

n=
 3

.6
7

0 1 2 3 4 5 6

0
2

4
6

8

x, n= 1000

m
ea

n=
 3

.9
7

0 1 2 3 4 5 6

0
2

4
6

8

x, n= 20000

m
ea

n=
 3

.9
7

4



Consistent parameters??
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Posterior Predictive Checks
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Posterior predictive checking

Lets look at the data (from the book).
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Data: twice as many women with 2 children as with 1.
Posterior predictive: fewer women with 2 children than with 1.
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Posterior predictive checking

> t.mc <- t2.mc <-NULL

> for(s in 1:10000) {

> theta1<-rgamma(1,a+sum(y1), b+length(y1))

> y1.mc<-rpois(length(y1),theta1)

> t.mc <- c(t.mc,mean(y1.mc))

> t2.mc<-c(t2.mc,sum(y1.mc==2)/sum(y1.mc==1))

> }
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Where t(y) is the mean! 8



Posterior predictive checking
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Where t(y) is the ratio of 2’s to 1’s in a dataset.
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Posterior predictive checking

I Lets look at the data (Gelman, Meng and Stern).

I Gelman (1990,92) describe positron emission tomography
experiment.

I Goal: Estimate the density of a radioactive isotope in a
cross-section of the brain.

I 2-d image is estimate from gamma-ray counts in a ring of
detectors around the head.

I n bins of counts based on positions of detectors — 6 million
counts.

I Bin count yi are modeled as independent Poisson(✓i )

I ⇥ = Ag + r where g is the unknown image, A is a known
linear operator and r are known corrections.

I A, g and r are non-negative.

I This is an easy problem without the constraint.
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Posterior predictive checking

I Poisson noise + model problems makes exact non-negative
solutions impossible.

I Use an estimate ĝ and capture the discrepancy between y and
✓̂ = Aĝ + r .

I Consider �2 discrepancy.

X 2(y ; ✓̂) =
X (yi � ✓̂i )2

✓̂i
I Fitting to real data: y with n = 22464.
I The best-fit non-negative image ĝ was not an exact fit leading

to the discrepancy between y and ✓̂ to be X 2(y ; ✓̂) ⇡ 30, 000.
I Reject the model!
I Possible failures:

I Error in the specification of A, r
I Lack of independence
I super-Poisson variance in the counts
I Error from discretizing the continuous g .
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to the discrepancy between y and ✓̂ to be X 2(y ; ✓̂) ⇡ 30, 000.

I Reject the model!
I Possible failures:

I Error in the specification of A, r
I Lack of independence
I super-Poisson variance in the counts
I Error from discretizing the continuous g .

11



Posterior predictive checking

I Poisson noise + model problems makes exact non-negative
solutions impossible.
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to the discrepancy between y and ✓̂ to be X 2(y ; ✓̂) ⇡ 30, 000.
I Reject the model!
I Possible failures:

I Error in the specification of A, r
I Lack of independence

I super-Poisson variance in the counts
I Error from discretizing the continuous g .

11



Posterior predictive checking

I Poisson noise + model problems makes exact non-negative
solutions impossible.
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Posterior predictive checking

I The “critically bad” level of X 2(y ; ✓̂) is n + 2
p
2n ⇡ 23, 000.

I We reassess and change the model.

I We get a �2 discrepancy that is 22, 000 or even 20, 000.

I Should we just accept this new model?

I No.

I Be skeptical!
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Another graph example
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Relational Data

Y =

0

BBBBB@

� Y12 Y13 · · · Y1m
Y21 �
Y31 �
... �

Ym1 �

1

CCCCCA

Yij is the relationship between nodes i and j .
When Yij 2 {0,1} this is a sociomatrix.



High school in Adolescent Health data set

I 181 male
respondents

I Each one
nominated at
most 5 friends

I There are
people who
nominated no
one and were
nominated by
no one
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Model - standard approach (SRM)

I The social relations model (SRM) was introduced by Warner,
Kenny and Stoto (1979).

I Probit model with row and column effects:

Yij = 1Zij>0

Zij = b tXij +ai +bj + eij

(ai bi )
iid⇠ normal(0,⌃ab)

cor(eij ,eji ) = r

I Note that cov(Zij ,Zkl ) = 0 unless Zij and Zkl are in the same
column, same row, or are reciprocal.



Summary statistics

I Posterior predictive checks (PPC): at each iteration of the
MCMC procedure we

1. Sample from the full conditionals of Z
(s)

.

2. Simulate new data, Y
(s)

.

3. Calculate test statistics.

I Statistics to consider:
I Binary row correlation: trow

�
Y

(s)� = average of

cor

⇣
Y

(s)
i ,�(i ,j),Y

(s)
j ,�(i ,j)

⌘2
.

I Binary column correlation: tcol

�
Y

(s)� = average of

cor

⇣
Y

(s)
�(i ,j),i ,Y

(s)
�(i ,j),j

⌘2

I Binary joint correlation: tjoint

�
Y

(s)� = average of

cor

⇣⇣
Y

(s)
i ,�(i ,j),Y

(s)
�(i ,j),i

⌘
,
⇣
Y

(s)
j ,�(i ,j),Y

(s)
�(i ,j),j

⌘⌘2



Summary statistics
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Observed statistic. Excess correlation is present.



A particular model for row and column covariance

I SRM is able to capture covariance within a row or within a
column:

cov(Zij ,Zkl ) =

8
><

>:

s2
a i = k , j 6= l

s2
b i 6= k , j = l

0 (i 6= k , j 6= l)

I We propose a matrix normal model that can capture
correlation between Zij and Zkl which are in different rows and
columns.


