Statistics 360/601 – Modern Bayesian Theory

Alexander Volfovsky

Lecture 8 - Sept 25, 2018

Monte Carlo

Monte Carlo approximation

Want to compute

$$\mathsf{E}[heta|y] = \int heta \mathsf{p}(heta|y) d heta$$

without worrying about actual integration...

- Let θ be a parameter of interest
- Let y₁,..., y_n be numerical values of a sample from a distribution p(y₁,..., y_n|θ)
- Let θ¹,..., θ^S ∼ p(θ|y₁,..., y_n) be iid samples from the posterior.
- We estimate our posterior quantity of interest as $1/S \sum g(\theta^i)$

Consistent parameters??

- ▶ Let the data come from *Y* ~Geometric(*p*).
- Recall that a geometric variable has pdf

$$\Pr(Y=k)=(1-p)^k p$$

and it captures a success on the k + 1 trial after k failures.

- The mean of a geometric is (1-p)/p.
- Let the model we think the data comes from be $Poisson(\theta)$.
- Let the prior be a Gamma (α, β) .
- We know the posterior is $Gamma(\alpha + \sum y_i, \beta + n)$.

Consistent parameters??

Consistent parameters??

Posterior Predictive Checks

Lets look at the data (from the book).

Data: twice as many women with 2 children as with 1. Posterior predictive: fewer women with 2 children than with 1.

- > t.mc <- t2.mc <-NULL</pre>
- > for(s in 1:10000) {
- > theta1<-rgamma(1,a+sum(y1), b+length(y1))</pre>
- > y1.mc<-rpois(length(y1),theta1)</pre>
- > t.mc <- c(t.mc,mean(y1.mc))</pre>
- > t2.mc<-c(t2.mc,sum(y1.mc==2)/sum(y1.mc==1))
 > }

Where t(y) is the mean!

8

Where t(y) is the ratio of 2's to 1's in a dataset.

• Lets look at the data (Gelman, Meng and Stern).

- Lets look at the data (Gelman, Meng and Stern).
- Gelman (1990,92) describe positron emission tomography experiment.

- Lets look at the data (Gelman, Meng and Stern).
- Gelman (1990,92) describe positron emission tomography experiment.
- Goal: Estimate the density of a radioactive isotope in a cross-section of the brain.

- Lets look at the data (Gelman, Meng and Stern).
- Gelman (1990,92) describe positron emission tomography experiment.
- Goal: Estimate the density of a radioactive isotope in a cross-section of the brain.
- 2-d image is estimate from gamma-ray counts in a ring of detectors around the head.

- Lets look at the data (Gelman, Meng and Stern).
- Gelman (1990,92) describe positron emission tomography experiment.
- Goal: Estimate the density of a radioactive isotope in a cross-section of the brain.
- 2-d image is estimate from gamma-ray counts in a ring of detectors around the head.
- n bins of counts based on positions of detectors 6 million counts.

- Lets look at the data (Gelman, Meng and Stern).
- Gelman (1990,92) describe positron emission tomography experiment.
- Goal: Estimate the density of a radioactive isotope in a cross-section of the brain.
- 2-d image is estimate from gamma-ray counts in a ring of detectors around the head.
- n bins of counts based on positions of detectors 6 million counts.
- Bin count y_i are modeled as independent Poisson (θ_i)

- Lets look at the data (Gelman, Meng and Stern).
- Gelman (1990,92) describe positron emission tomography experiment.
- Goal: Estimate the density of a radioactive isotope in a cross-section of the brain.
- 2-d image is estimate from gamma-ray counts in a ring of detectors around the head.
- n bins of counts based on positions of detectors 6 million counts.
- Bin count y_i are modeled as independent Poisson (θ_i)
- → Θ = Ag + r where g is the unknown image, A is a known linear operator and r are known corrections.

- Lets look at the data (Gelman, Meng and Stern).
- Gelman (1990,92) describe positron emission tomography experiment.
- Goal: Estimate the density of a radioactive isotope in a cross-section of the brain.
- 2-d image is estimate from gamma-ray counts in a ring of detectors around the head.
- n bins of counts based on positions of detectors 6 million counts.
- Bin count y_i are modeled as independent Poisson (θ_i)
- → Θ = Ag + r where g is the unknown image, A is a known linear operator and r are known corrections.
- ► *A*, *g* and *r* are non-negative.

- Lets look at the data (Gelman, Meng and Stern).
- Gelman (1990,92) describe positron emission tomography experiment.
- Goal: Estimate the density of a radioactive isotope in a cross-section of the brain.
- 2-d image is estimate from gamma-ray counts in a ring of detectors around the head.
- n bins of counts based on positions of detectors 6 million counts.
- Bin count y_i are modeled as independent Poisson (θ_i)
- → Θ = Ag + r where g is the unknown image, A is a known linear operator and r are known corrections.
- ► *A*, *g* and *r* are non-negative.
- This is an easy problem without the constraint.

 Poisson noise + model problems makes exact non-negative solutions impossible.

- Poisson noise + model problems makes exact non-negative solutions impossible.
- Use an estimate \hat{g} and capture the discrepancy between y and $\hat{\theta} = A\hat{g} + r$.

- Poisson noise + model problems makes exact non-negative solutions impossible.
- ► Use an estimate \hat{g} and capture the discrepancy between y and $\hat{\theta} = A\hat{g} + r$.
- Consider χ^2 discrepancy.

$$X^2(y;\hat{ heta}) = \sum rac{(y_i - \hat{ heta}_i)^2}{\hat{ heta}_i}$$

- Poisson noise + model problems makes exact non-negative solutions impossible.
- Use an estimate \hat{g} and capture the discrepancy between y and $\hat{\theta} = A\hat{g} + r$.
- Consider χ^2 discrepancy.

$$X^2(y;\hat{ heta}) = \sum rac{(y_i - \hat{ heta}_i)^2}{\hat{ heta}_i}$$

• Fitting to real data: y with n = 22464.

- Poisson noise + model problems makes exact non-negative solutions impossible.
- Use an estimate \hat{g} and capture the discrepancy between y and $\hat{\theta} = A\hat{g} + r$.
- Consider χ^2 discrepancy.

$$X^2(y;\hat{ heta}) = \sum rac{(y_i - \hat{ heta}_i)^2}{\hat{ heta}_i}$$

- Fitting to real data: y with n = 22464.
- The best-fit non-negative image ĝ was not an exact fit leading to the discrepancy between y and θ̂ to be X²(y; θ̂) ≈ 30,000.

- Poisson noise + model problems makes exact non-negative solutions impossible.
- Use an estimate \hat{g} and capture the discrepancy between y and $\hat{\theta} = A\hat{g} + r$.
- Consider χ^2 discrepancy.

$$X^2(y;\hat{ heta}) = \sum rac{(y_i - \hat{ heta}_i)^2}{\hat{ heta}_i}$$

- Fitting to real data: y with n = 22464.
- ► The best-fit non-negative image ĝ was not an exact fit leading to the discrepancy between y and θ to be X²(y; θ̂) ≈ 30,000.
- Reject the model!

- Poisson noise + model problems makes exact non-negative solutions impossible.
- Use an estimate \hat{g} and capture the discrepancy between y and $\hat{\theta} = A\hat{g} + r$.
- Consider χ^2 discrepancy.

$$X^2(y;\hat{ heta}) = \sum rac{(y_i - \hat{ heta}_i)^2}{\hat{ heta}_i}$$

- Fitting to real data: y with n = 22464.
- ► The best-fit non-negative image ĝ was not an exact fit leading to the discrepancy between y and θ to be X²(y; θ̂) ≈ 30,000.
- Reject the model!
- Possible failures:

- Poisson noise + model problems makes exact non-negative solutions impossible.
- Use an estimate \hat{g} and capture the discrepancy between y and $\hat{\theta} = A\hat{g} + r$.
- Consider χ^2 discrepancy.

$$X^2(y;\hat{ heta}) = \sum rac{(y_i - \hat{ heta}_i)^2}{\hat{ heta}_i}$$

- Fitting to real data: y with n = 22464.
- ► The best-fit non-negative image ĝ was not an exact fit leading to the discrepancy between y and θ to be X²(y; θ̂) ≈ 30,000.
- Reject the model!
- Possible failures:
 - Error in the specification of A, r

- Poisson noise + model problems makes exact non-negative solutions impossible.
- Use an estimate \hat{g} and capture the discrepancy between y and $\hat{\theta} = A\hat{g} + r$.
- Consider χ^2 discrepancy.

$$X^2(y;\hat{ heta}) = \sum rac{(y_i - \hat{ heta}_i)^2}{\hat{ heta}_i}$$

- Fitting to real data: y with n = 22464.
- The best-fit non-negative image ĝ was not an exact fit leading to the discrepancy between y and θ̂ to be X²(y; θ̂) ≈ 30,000.
- Reject the model!
- Possible failures:
 - Error in the specification of A, r
 - Lack of independence

- Poisson noise + model problems makes exact non-negative solutions impossible.
- Use an estimate \hat{g} and capture the discrepancy between y and $\hat{\theta} = A\hat{g} + r$.
- Consider χ^2 discrepancy.

$$X^2(y;\hat{ heta}) = \sum rac{(y_i - \hat{ heta}_i)^2}{\hat{ heta}_i}$$

- Fitting to real data: y with n = 22464.
- The best-fit non-negative image ĝ was not an exact fit leading to the discrepancy between y and θ̂ to be X²(y; θ̂) ≈ 30,000.
- Reject the model!
- Possible failures:
 - Error in the specification of A, r
 - Lack of independence
 - super-Poisson variance in the counts

- Poisson noise + model problems makes exact non-negative solutions impossible.
- Use an estimate \hat{g} and capture the discrepancy between y and $\hat{\theta} = A\hat{g} + r$.
- Consider χ^2 discrepancy.

$$X^2(y;\hat{ heta}) = \sum rac{(y_i - \hat{ heta}_i)^2}{\hat{ heta}_i}$$

- Fitting to real data: y with n = 22464.
- The best-fit non-negative image ĝ was not an exact fit leading to the discrepancy between y and θ̂ to be X²(y; θ̂) ≈ 30,000.
- Reject the model!
- Possible failures:
 - Error in the specification of A, r
 - Lack of independence
 - super-Poisson variance in the counts
 - Error from discretizing the continuous g.

• The "critically bad" level of $X^2(y; \hat{\theta})$ is $n + 2\sqrt{2n} \approx 23,000$.

- The "critically bad" level of $X^2(y; \hat{\theta})$ is $n + 2\sqrt{2n} \approx 23,000$.
- We reassess and change the model.

- The "critically bad" level of $X^2(y; \hat{\theta})$ is $n + 2\sqrt{2n} \approx 23,000$.
- We reassess and change the model.
- We get a χ^2 discrepancy that is 22,000 or even 20,000.

- The "critically bad" level of $X^2(y; \hat{\theta})$ is $n + 2\sqrt{2n} \approx 23,000$.
- We reassess and change the model.
- We get a χ^2 discrepancy that is 22,000 or even 20,000.
- Should we just accept this new model?

- The "critically bad" level of $X^2(y; \hat{\theta})$ is $n + 2\sqrt{2n} \approx 23,000$.
- We reassess and change the model.
- We get a χ^2 discrepancy that is 22,000 or even 20,000.
- Should we just accept this new model?
- No.

- The "critically bad" level of $X^2(y; \hat{\theta})$ is $n + 2\sqrt{2n} \approx 23,000$.
- We reassess and change the model.
- We get a χ^2 discrepancy that is 22,000 or even 20,000.
- Should we just accept this new model?
- ► No.
- Be skeptical!

Another graph example

Relational Data

$$Y = \begin{pmatrix} - & Y_{12} & Y_{13} & \dots & Y_{1m} \\ Y_{21} & - & & & & \\ Y_{31} & & - & & & \\ \vdots & & & - & & \\ Y_{m1} & & & & - \end{pmatrix}$$

 Y_{ij} is the relationship between nodes *i* and *j*. When $Y_{ij} \in \{0,1\}$ this is a sociomatrix.

High school in Adolescent Health data set

- 181 male respondents
- Each one nominated at most 5 friends
- There are people who nominated no one and were nominated by no one

Model - standard approach (SRM)

- The social relations model (SRM) was introduced by Warner, Kenny and Stoto (1979).
- Probit model with row and column effects:

$$\begin{array}{rcl} Y_{ij} &=& \mathbf{1}_{Z_{ij}>0} \\ Z_{ij} &=& \beta^t X_{ij} + a_i + b_j + \varepsilon_{ij} \\ (a_i \, b_i) &\stackrel{\mathrm{iid}}{\sim} & \mathrm{normal} \left(0, \Sigma_{ab}\right) \\ \mathrm{cor} \left(\varepsilon_{ij}, \varepsilon_{ji}\right) &=& \rho \end{array}$$

► Note that cov (Z_{ij}, Z_{kl}) = 0 unless Z_{ij} and Z_{kl} are in the same column, same row, or are reciprocal.

Summary statistics

- Posterior predictive checks (PPC): at each iteration of the MCMC procedure we
 - 1. Sample from the full conditionals of $Z^{(s)}$.
 - 2. Simulate new data, $Y^{(s)}$.
 - 3. Calculate test statistics.
- Statistics to consider:
 - ► Binary row correlation: $t_{row}(Y^{(s)}) = average of$ $cor <math>\left(Y_{i,-(i,j)}^{(s)}, Y_{j,-(i,j)}^{(s)}\right)^2$.
 - ▶ Binary column correlation: t_{col} (Y^(s)) = average of cor (Y^(s)_{-(i,j),i}, Y^(s)_{-(i,j),j})²
 - ► Binary joint correlation: $t_{joint}(Y^{(s)}) = average of$ $cor <math>\left(\left(Y_{i,-(i,j)}^{(s)}, Y_{-(i,j),i}^{(s)}\right), \left(Y_{j,-(i,j)}^{(s)}, Y_{-(i,j),j}^{(s)}\right)\right)^2$

Summary statistics

Observed statistic. Excess correlation is present.

A particular model for row and column covariance

SRM is able to capture covariance within a row or within a column:

$$\operatorname{cov}(Z_{ij}, Z_{kl}) = \begin{cases} \sigma_a^2 & i = k, j \neq l \\ \sigma_b^2 & i \neq k, j = l \\ 0 & (i \neq k, j \neq l) \end{cases}$$

▶ We propose a matrix normal model that can capture correlation between Z_{ij} and Z_{kl} which are in different rows and columns.