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Monte Carlo



Monte Carlo approximation

Want to compute
Eloly) = [ op(6ly)ot

without worrying about actual integration...

> Let 0 be a parameter of interest

> Let y1,...,Yn be numerical values of a sample from a
distribution p(y1,...,Yn|0)

> Let 61,...,0° ~ p(Oy1,...,y,) beiid samples from the
posterior.

» We estimate our posterior quantity of interest as 1/S 3" g(#")



Consistent parameters??

> Let the data come from Y ~Geometric(p).

v

Recall that a geometric variable has pdf
Pr(Y = k) = (1 - p)fp

and it captures a success on the k + 1 trial after k failures.

v

The mean of a geometric is (1 — p)/p.

v

Let the model we think the data comes from be Poisson(6).

v

Let the prior be a Gamma(a, ).
We know the posterior is Gamma(a + > yi, 8 + n).

v
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Consistent parameters??
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Posterior Predictive Checks



Posterior predictive checking

Lets look at the data (from the book).

—— empirical distribution
8 predictive distribution
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Data: twice as many women with 2 children as with 1.
Posterior predictive: fewer women with 2 children than with 1.



Posterior predictive checking

t.mc <- t2.mc <-NULL

for(s in 1:10000) {
thetal<-rgamma(l,a+sum(yl), b+length(yl))
y1.mc<-rpois(length(yl),thetal)

t.mc <- c(t.mc,mean(yl.mc))
t2.mc<-c(t2.mc,sum(yl.mc==2)/sum(yl.mc==1))
}
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3 Where t(y) is the mean!



Posterior predictive checking
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Where t(y) is the ratio of 2's to 1's in a dataset.



Posterior predictive checking

> Lets look at the data (Gelman, Meng and Stern).
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Posterior predictive checking

> Lets look at the data (Gelman, Meng and Stern).

» Gelman (1990,92) describe positron emission tomography
experiment.

» Goal: Estimate the density of a radioactive isotope in a
cross-section of the brain.

» 2-d image is estimate from gamma-ray counts in a ring of
detectors around the head.

> n bins of counts based on positions of detectors — 6 million
counts.

» Bin count y; are modeled as independent Poisson(6;)

» © = Ag + r where g is the unknown image, A is a known
linear operator and r are known corrections.

» A, g and r are non-negative.

» This is an easy problem without the constraint.
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Posterior predictive checking

» Poisson noise + model problems makes exact non-negative
solutions impossible.
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Posterior predictive checking

>

Poisson noise + model problems makes exact non-negative
solutions impossible.

Use an estimate g and capture the discrepancy between y and
6=Ag+r.

Consider x? discrepancy.

. 0.2
x(yid) = Yo Yt

» Fitting to real data: y with n = 22464.
» The best-fit non-negative image g was not an exact fit leading

to the discrepancy between y and 0 to be X2(y; GA) ~ 30, 000.
Reject the model!
Possible failures:

» Error in the specification of A, r

» Lack of independence

» super-Poisson variance in the counts
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Posterior predictive checking

>

Poisson noise + model problems makes exact non-negative
solutions impossible.

Use an estimate g and capture the discrepancy between y and
6=Ag+r.

Consider x? discrepancy.

. 0.2
x(yid) = Yo Yt

» Fitting to real data: y with n = 22464.
» The best-fit non-negative image g was not an exact fit leading

to the discrepancy between y and 0 to be X2(y; GA) ~ 30, 000.

Reject the model!
Possible failures:
» Error in the specification of A, r
Lack of independence
super-Poisson variance in the counts
Error from discretizing the continuous g.

v vVvYyyw
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Posterior predictive checking

» The “critically bad” level of X2(y; ) is n+ 2v/2n ~ 23,000.
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Posterior predictive checking

» The “critically bad” level of X2(y; ) is n+ 2v/2n ~ 23,000.
> We reassess and change the model.

» We get a x? discrepancy that is 22,000 or even 20, 000.

» Should we just accept this new model?

» No.

v

Be skeptical!



Another graph example
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Relational Data

y = | Ya -

le
Y;; is the relationship between nodes i and ;.
When Yj; € {0,1} this is a sociomatrix.



High school in Adolescent Health data set

» 181 male
respondents

» Each one
nominated at
most 5 friends

» There are
people who
nominated no
one and were
nominated by
no one
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Model - standard approach (SRM)

» The social relations model (SRM) was introduced by Warner,
Kenny and Stoto (1979).

» Probit model with row and column effects:

Yi = 1z;50
Zy = BtX,-J-—Fa,-—i-bj—i-s,-j
(aj bi) S normal (0, ,p)
cor (&j,&i) = P

> Note that cov(Zjj, Zi) = 0 unless Zjj and Z are in the same
column, same row, or are reciprocal.



Summary statistics

» Posterior predictive checks (PPC): at each iteration of the
MCMC procedure we

1. Sample from the full conditionals of Z(%).
2. Simulate new data, Y.
3. Calculate test statistics.

» Statistics to consider:

> Binary row correlation: tiw (Y(*)) = average of

(s) © )
ot (Yif(u)’ ij(i«J)> :

» Binary column correlation: t (Y(S)) = average of

(s) ) \?
cor (Y—(U)J’ Y—(:‘J)J)
> Binary joint correlation: tjin; (Y(*)) = average of

cor ((Yi(,s—)(iJ)’ YES(L)J) ’ (‘?'Es—)w)’ YES()IZJ)J) ) 2



Summary statistics
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Observed statistic. Excess correlation is present.



A particular model for row and column covariance

» SRM is able to capture covariance within a row or within a

column:
63 = ka./ 7£ /
cov(Zj,Zi) = Sof i#kj=I
0 (i#kj#)

» We propose a matrix normal model that can capture
correlation between Zj; and Zj; which are in different rows and
columns.



