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Outline

Ordered outcomes in Bayesian infernece

Rank likelihood

Likelihoods for Fixed Rank Nomination Networks with Applications
to Friendship Networks from Add Health
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Ordered outcomes

I Frequently encountered in health and social sciences.

I Example: educational levels (“high school”,
“college”,“masters”,“med school”)

I What’s special about “order”?

I There is no immediate numerical scale for the data.

I Coding 1 = “high school,” 2 “college,” and so on...

I College is not twice as much as high school.

I We call these type of outcomes “ordinal non-numeric”.
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Ordered outcomes

Data on education level and number of children from the 1994
General Social Survey.
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Probit regression
Chapter 12.1.1 in Hoff

I In the previous example, it is not possible to use a numeric
scale to model education level.

I Imagine there is a numeric random variable “education” which
is binned into the “education level” categories.

I If we know how to get from “education level” to “education”
then we can just model that in a numeric way.

I If we can’t go directly we can treat the “education” variable
as latent:

ε1, . . . , εn
iid∼ normal(0, 1)

educationi = βtxi + εi

education leveli = g(educationi )
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Probit regression
Chapter 12.1.1 in Hoff

ε1, . . . , εn
iid∼ normal(0, 1)

educationi = βtxi + εi

education leveli = g(educationi )

Peculiarities of setup:

I How do you specify g?

Any non-decreasing function that maps between the domain
of the latent variable and the observed variable.

I Variance of errors is fixed.

The scale can be defined by g .

I What can be in β?

The location can be defined by g .
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Probit regression
Chapter 12.1.1 in Hoff

When the observed variable has K categories, g can be defined as:
y = g(z) = 1 if −∞ = g0 < z < g1

= 2 if g1 < z < g2
...

= K if gK−1 < z < gK =∞
The values {g1, . . . , gK−1} are “thresholds” - when z moves
past them, the category in y changes.

I The unknown parameters in the model are the regression
coefficients and the thresholds.

I Bayesian approach: normal priors.

I Get joint posterior via a Gibbs sampler.
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Probit regression
Full model

Model:

ε1, . . . , εn
iid∼ normal(0, 1)

educationi = βtxi + εi

education leveli = g(educationi )

Priors:

β ∼ normal(0, n(X tX )−1)

{g1, . . . , gK−1} ∼ p(g)(= normal(µ,Σ))
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Probit regression
Full conditionals: β

I Just like with ordinary regression: p(β|y , z , g) ∝ p(β)p(z |β).

I No dependence on g .

I Normal-normal conjugacy, so posterior is also normal:

var(β|z) =
n

n + 1
(X tX )−1

E(β|z) =
n

n + 1
(X tX )−1X tz .
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Probit regression
Full conditionals: Z

I The sampling distribution for the Zi is normal(βtxi , 1).

I The posterior of the Zi is simply that constrained to be in the
“correct” subinterval.

I If Yi = yi then Zi must be in the interval (gyi−1, gyi ).

I The posterior is a constrained normal.
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Probit regression
Full conditionals: g

I Recall the prior on g is multivariate normal with mean vector
µ and diagonal covariance matrix Σ.

I Conditional on all the Y and Z , the element gk must lie
between all the zi for which yi = k and the zi for which
yi = k + 1.

I With a normal prior, this is another constrained normal.
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Sampling from a constrained normal

I We are interested in sampling g from a normal distribution
with mean µ, variance σ constrained to the interval (a, b) ∈ R̄.

I Easiest way to do this by sampling a uniform random variable
and doing an inverse CDF transform:

u ∼ Unif(Φ(
a− µ
σ

),Φ(
b − µ
σ

))

g = µ+ σΦ−1(u)

I R code is given by:

u <- runif(1, pnorm((a-mu)/sigma),pnorm((b-mu)/sigma))

g = mu + sigma*qnorm(u)
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Example
GSS data

Interested in modeling education level based on number of
children, parental education level and an interaction.

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●●
●

● ● ●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

0 2 4 6 8

−
3

−
2

−
1

0
1

2
3

4

number of children

z

●

PDEG=0
PDEG=1

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4
5

6
7

ββ3

de
ns

ity

prior
posterior

12



Outline

Ordered outcomes in Bayesian infernece

Rank likelihood

Likelihoods for Fixed Rank Nomination Networks with Applications
to Friendship Networks from Add Health
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Rank likelihood

I For data z = (z1, . . . , zn) that comes from a distribution
parametrized by β, the probability p(z |β) as a function of β is
known as the likelihood.

I If we only know the ranks r of the data z then p(r |β) is a
marginal likelihood known as the rank likelihood.

I It is marginal because it is given by the integral
∫
p(z |β)dz

where the integration is done over the region
{zr1 < zr2 < · · · < zrn}.

I Detailed outline given by Pettitt (1982).

I For continuous z , the information in the rank likelihood is the
same as in the ranks of the data (hence the name).

I For discrete data, there is less information due to the
possibility of ties.
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Rank likelihood (Pettitt, 1982)

I Let z1, . . . , zn be independent where zi ∼ normal(xiβ, 1).

I We are interested in making inference about β when we only
observe the ranks r1, . . . , rn of the data.

I The marginal likelihood of the ranks is given by
f (r |β) = Pr(zα(1) < · · · < zα(n)|β) where α(i) = j if zj is the
ith smallest.

I Pettitt constructs approximations for the integral over the
order of the zs

f (r |β) = const

∫
exp(−(z − Xβ)t(z − Xβ))dz .

I Inference via a prior on β and using the exact or approximate
marginal likelihoods. (Monahan and Boos, 1992)

I Theoretical guarantees (Bickel and Ritov, 1997, Hoff, Niu and
Wellner, 2014).
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Rank likelihood
Details

I If we observe y1 > y2 then we know that g(Z1) > g(Z2) and
so Z1 > Z2.

I Observing y tells us that the Zi must lie in

R(y) = {z ∈ Rn : zi1 < zi2 if yi1 < yi2}.

I Posterior inference for β does not change.

I Posterior inference for Zi does change since we must update
each of the Zi with respect to the other ones (there are no
more cutoffs).

I Posterior of Zi conditional on the ordering and the value of
the other Zj and on β is a constrained normal with boundary
given by max{zj : yj < yi} and min{zj : yi < yj}.

15
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I Posterior inference for Zi does change since we must update
each of the Zi with respect to the other ones (there are no
more cutoffs).

I Posterior of Zi conditional on the ordering and the value of
the other Zj and on β is a constrained normal with boundary
given by max{zj : yj < yi} and min{zj : yi < yj}.
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GSS Example

Interested in modeling education level based on number of
children, parental education level and an interaction.
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Rank likelihood
Applications

I Semiparametric regression.

I Ordinal regression.

I Semiparameteric copula estimation (Section 12.2).

I Network analysis.
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Outline

Ordered outcomes in Bayesian infernece

Rank likelihood

Likelihoods for Fixed Rank Nomination Networks with Applications
to Friendship Networks from Add Health
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Social network data

I Datasets: PROSPER, NSCR, AddHealth

I Relate network characteristics to
individual-level behavior

I Literature: ERGM, latent variable models
I Assumptions:

I Data is fully observed
I The support is the set of all

sociomatrices

I In practice:

I Ranked data
I Censored observations
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Figure 3: Male nomination network.

interest is a comparison of such estimates to those obtained using the binomial and rank likelihoods,

in order to see if the relationships between the estimates are similar to those seen in the simulation

study in Section 3.2. To this end, we obtained parameter estimates and confidence intervals of

β for each of the 14 FRN networks and each of the three likelihoods. In the interest of brevity,

we give details on the data and results for the male-male and female-female network for only one

school, and briefly summarize the results for the remaining 12.

Graphical descriptions of the male-male and female-female FRN networks of the largest of the

7 schools are presented in Figures 3 and 4 respectively. The networks are based on data from 622

male and 646 female study participants. The first plot in each row consists of a graph with edges

representing the friendship nominations and nodes representing the students, color-coded by grade.

The second and third plots give the degree distributions, i.e. the empirical distributions of the

number of nominations made to other survey participants (outdegree) and number of nominations

received by other survey participants (indegree). All outdegrees are less than or equal to 5, reflecting

the fact that each student was allowed to make at most 5 nominations. A substantial number of

students also report 0 friendships to other survey participants, but this should not be taken to

mean that they have zero friendships: A substantial fraction of the friendship nominations of

survey participants were to students in the school who did not participate in the survey (22%

for this school), or to individuals outside the school entirely. As no information is available for

these out-of-survey individuals, we cannot include them in the model directly. However, the FRN

likelihood can be modified to accommodate this information indirectly, by recognizing that the

22

A type of likelihood that accommodates the ranked and censored
nature of data from Fixed Rank Nomination (FRN) surveys and
allows for estimation of regression effects.
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Social network data

I Datasets: PROSPER, NSCR, AddHealth

I Relate network characteristics to
individual-level behavior

I Literature: ERGM, latent variable models
I Assumptions:

I Data is fully observed
I The support is the set of all

sociomatrices

I In practice:

I Ranked data
I Censored observations
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Figure 3: Male nomination network.

interest is a comparison of such estimates to those obtained using the binomial and rank likelihoods,

in order to see if the relationships between the estimates are similar to those seen in the simulation

study in Section 3.2. To this end, we obtained parameter estimates and confidence intervals of

β for each of the 14 FRN networks and each of the three likelihoods. In the interest of brevity,

we give details on the data and results for the male-male and female-female network for only one

school, and briefly summarize the results for the remaining 12.

Graphical descriptions of the male-male and female-female FRN networks of the largest of the

7 schools are presented in Figures 3 and 4 respectively. The networks are based on data from 622

male and 646 female study participants. The first plot in each row consists of a graph with edges

representing the friendship nominations and nodes representing the students, color-coded by grade.

The second and third plots give the degree distributions, i.e. the empirical distributions of the

number of nominations made to other survey participants (outdegree) and number of nominations

received by other survey participants (indegree). All outdegrees are less than or equal to 5, reflecting

the fact that each student was allowed to make at most 5 nominations. A substantial number of

students also report 0 friendships to other survey participants, but this should not be taken to

mean that they have zero friendships: A substantial fraction of the friendship nominations of

survey participants were to students in the school who did not participate in the survey (22%

for this school), or to individuals outside the school entirely. As no information is available for

these out-of-survey individuals, we cannot include them in the model directly. However, the FRN

likelihood can be modified to accommodate this information indirectly, by recognizing that the

22

A type of likelihood that accommodates the ranked and censored
nature of data from Fixed Rank Nomination (FRN) surveys and
allows for estimation of regression effects.
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Social network data

I Datasets: PROSPER, NSCR, AddHealth

I Relate network characteristics to
individual-level behavior

I Literature: ERGM, latent variable models

I Assumptions:

I Data is fully observed
I The support is the set of all

sociomatrices

I In practice:

I Ranked data
I Censored observations
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Figure 3: Male nomination network.

interest is a comparison of such estimates to those obtained using the binomial and rank likelihoods,

in order to see if the relationships between the estimates are similar to those seen in the simulation

study in Section 3.2. To this end, we obtained parameter estimates and confidence intervals of

β for each of the 14 FRN networks and each of the three likelihoods. In the interest of brevity,

we give details on the data and results for the male-male and female-female network for only one

school, and briefly summarize the results for the remaining 12.

Graphical descriptions of the male-male and female-female FRN networks of the largest of the

7 schools are presented in Figures 3 and 4 respectively. The networks are based on data from 622

male and 646 female study participants. The first plot in each row consists of a graph with edges

representing the friendship nominations and nodes representing the students, color-coded by grade.

The second and third plots give the degree distributions, i.e. the empirical distributions of the

number of nominations made to other survey participants (outdegree) and number of nominations

received by other survey participants (indegree). All outdegrees are less than or equal to 5, reflecting

the fact that each student was allowed to make at most 5 nominations. A substantial number of

students also report 0 friendships to other survey participants, but this should not be taken to

mean that they have zero friendships: A substantial fraction of the friendship nominations of

survey participants were to students in the school who did not participate in the survey (22%

for this school), or to individuals outside the school entirely. As no information is available for

these out-of-survey individuals, we cannot include them in the model directly. However, the FRN

likelihood can be modified to accommodate this information indirectly, by recognizing that the

22

A type of likelihood that accommodates the ranked and censored
nature of data from Fixed Rank Nomination (FRN) surveys and
allows for estimation of regression effects.
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I Relate network characteristics to
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I The support is the set of all
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Figure 3: Male nomination network.

interest is a comparison of such estimates to those obtained using the binomial and rank likelihoods,

in order to see if the relationships between the estimates are similar to those seen in the simulation

study in Section 3.2. To this end, we obtained parameter estimates and confidence intervals of

β for each of the 14 FRN networks and each of the three likelihoods. In the interest of brevity,

we give details on the data and results for the male-male and female-female network for only one

school, and briefly summarize the results for the remaining 12.

Graphical descriptions of the male-male and female-female FRN networks of the largest of the

7 schools are presented in Figures 3 and 4 respectively. The networks are based on data from 622

male and 646 female study participants. The first plot in each row consists of a graph with edges

representing the friendship nominations and nodes representing the students, color-coded by grade.

The second and third plots give the degree distributions, i.e. the empirical distributions of the

number of nominations made to other survey participants (outdegree) and number of nominations

received by other survey participants (indegree). All outdegrees are less than or equal to 5, reflecting

the fact that each student was allowed to make at most 5 nominations. A substantial number of

students also report 0 friendships to other survey participants, but this should not be taken to

mean that they have zero friendships: A substantial fraction of the friendship nominations of

survey participants were to students in the school who did not participate in the survey (22%

for this school), or to individuals outside the school entirely. As no information is available for

these out-of-survey individuals, we cannot include them in the model directly. However, the FRN

likelihood can be modified to accommodate this information indirectly, by recognizing that the

22

A type of likelihood that accommodates the ranked and censored
nature of data from Fixed Rank Nomination (FRN) surveys and
allows for estimation of regression effects.
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Social network data

I Datasets: PROSPER, NSCR, AddHealth

I Relate network characteristics to
individual-level behavior

I Literature: ERGM, latent variable models
I Assumptions:

I Data is fully observed
I The support is the set of all

sociomatrices

I In practice:
I Ranked data
I Censored observations
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Figure 3: Male nomination network.

interest is a comparison of such estimates to those obtained using the binomial and rank likelihoods,

in order to see if the relationships between the estimates are similar to those seen in the simulation

study in Section 3.2. To this end, we obtained parameter estimates and confidence intervals of

β for each of the 14 FRN networks and each of the three likelihoods. In the interest of brevity,

we give details on the data and results for the male-male and female-female network for only one

school, and briefly summarize the results for the remaining 12.

Graphical descriptions of the male-male and female-female FRN networks of the largest of the

7 schools are presented in Figures 3 and 4 respectively. The networks are based on data from 622

male and 646 female study participants. The first plot in each row consists of a graph with edges

representing the friendship nominations and nodes representing the students, color-coded by grade.

The second and third plots give the degree distributions, i.e. the empirical distributions of the

number of nominations made to other survey participants (outdegree) and number of nominations

received by other survey participants (indegree). All outdegrees are less than or equal to 5, reflecting

the fact that each student was allowed to make at most 5 nominations. A substantial number of

students also report 0 friendships to other survey participants, but this should not be taken to

mean that they have zero friendships: A substantial fraction of the friendship nominations of

survey participants were to students in the school who did not participate in the survey (22%

for this school), or to individuals outside the school entirely. As no information is available for

these out-of-survey individuals, we cannot include them in the model directly. However, the FRN

likelihood can be modified to accommodate this information indirectly, by recognizing that the

22

A type of likelihood that accommodates the ranked and censored
nature of data from Fixed Rank Nomination (FRN) surveys and
allows for estimation of regression effects.
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I Relate network characteristics to
individual-level behavior

I Literature: ERGM, latent variable models
I Assumptions:

I Data is fully observed
I The support is the set of all

sociomatrices

I In practice:
I Ranked data
I Censored observations
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Figure 3: Male nomination network.

interest is a comparison of such estimates to those obtained using the binomial and rank likelihoods,

in order to see if the relationships between the estimates are similar to those seen in the simulation

study in Section 3.2. To this end, we obtained parameter estimates and confidence intervals of

β for each of the 14 FRN networks and each of the three likelihoods. In the interest of brevity,

we give details on the data and results for the male-male and female-female network for only one

school, and briefly summarize the results for the remaining 12.

Graphical descriptions of the male-male and female-female FRN networks of the largest of the

7 schools are presented in Figures 3 and 4 respectively. The networks are based on data from 622

male and 646 female study participants. The first plot in each row consists of a graph with edges

representing the friendship nominations and nodes representing the students, color-coded by grade.

The second and third plots give the degree distributions, i.e. the empirical distributions of the

number of nominations made to other survey participants (outdegree) and number of nominations

received by other survey participants (indegree). All outdegrees are less than or equal to 5, reflecting

the fact that each student was allowed to make at most 5 nominations. A substantial number of

students also report 0 friendships to other survey participants, but this should not be taken to

mean that they have zero friendships: A substantial fraction of the friendship nominations of

survey participants were to students in the school who did not participate in the survey (22%

for this school), or to individuals outside the school entirely. As no information is available for

these out-of-survey individuals, we cannot include them in the model directly. However, the FRN

likelihood can be modified to accommodate this information indirectly, by recognizing that the

22

A type of likelihood that accommodates the ranked and censored
nature of data from Fixed Rank Nomination (FRN) surveys and
allows for estimation of regression effects.
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FRN Outline

I Fixed rank nominations likelihood

I Rank based likelihood

I Binary likelihood

I Simulations

I AddHealth example
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Notation

I Y = {yij : i 6= j} is a sociomatrix of
ordinal relationships

yij > yik denotes person i preferring
person j to person k

Y =


− y12 · · · y1n
y21 −

... −
yn1 −



I In FRN we observe a sociomatrix S = {sij : i 6= j}
sij = 0 if j is not nominated by i

sij > sik if i scores j more highly than k

Observed outdegree di =
∑

j 6=i 1 (sij > 0) satisfied di ≤ m

I For each likelihood, define the set relations between sij and yij
I Statistical model {p (Y |θ) : θ ∈ Θ} assists in analysis
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Model - standard approach (SRM)

I The social relations model (SRM) was introduced by Warner,
Kenny and Stoto (1979).

I Probit model with row and column effects:

Yij = 1Zij>0

Zij = βtXij + ai + bj + εij

(ai bi )
iid∼ normal (0,Σab)

cor (εij , εji ) = ρ

I Note that cov (Zij ,Zkl) = 0 unless Zij and Zkl are in the same
column, same row, or are reciprocal.
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Model - extended approach
Multiplicative effects

Yij = 1Zij>0

Zij = βtXij + ai + bj + uti vjεij

(ai bi )
iid∼ normal (0,Σab)

(ui , vi ) ∼ normal(0,Σuv )

cor (εij , εji ) = ρ
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Set relations

sij > sik ⇒ yij > yik
sij = 0 and di < m ⇒ yij ≤ 0

sij > 0 ⇒ yij > 0
sij = 0 ⇒ yij < 0

I Define sets F (S), R (S) and B (S)

I Define a model {p (Y |θ) : θ ∈ Θ}
I Base inference on θ on a likelihood

∫
dP (Y |θ)
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FRN

sij > sik ⇒ yij > yik } F (S)sij = 0 and di < n ⇒ yij ≤ 0
sij > 0 ⇒ yij > 0
sij = 0 ⇒ yij < 0

I Captures censoring in the data

I Differentiates between different ranks
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Rank

sij > sik ⇒ yij > yik } R (S)
sij = 0 and di < n ⇒ yij ≤ 0

sij > 0 ⇒ yij > 0
sij = 0 ⇒ yij < 0

I Valid but not fully informative: F (S) ( R (S)

I Variants of this likelihood are used for semiparametric
regression modeling and copula estimation

I Cannot estimate “sender” specific effects

25



Rank

sij > sik ⇒ yij > yik } R (S)
sij = 0 and di < n ⇒ yij ≤ 0

sij > 0 ⇒ yij > 0
sij = 0 ⇒ yij < 0

I Valid but not fully informative: F (S) ( R (S)

I Variants of this likelihood are used for semiparametric
regression modeling and copula estimation

I Cannot estimate “sender” specific effects

25



Rank

sij > sik ⇒ yij > yik } R (S)
sij = 0 and di < n ⇒ yij ≤ 0

sij > 0 ⇒ yij > 0
sij = 0 ⇒ yij < 0

I Valid but not fully informative: F (S) ( R (S)

I Variants of this likelihood are used for semiparametric
regression modeling and copula estimation

I Cannot estimate “sender” specific effects

25



Rank

sij > sik ⇒ yij > yik } R (S)
sij = 0 and di < n ⇒ yij ≤ 0

sij > 0 ⇒ yij > 0
sij = 0 ⇒ yij < 0

I Valid but not fully informative: F (S) ( R (S)

I Variants of this likelihood are used for semiparametric
regression modeling and copula estimation

I Cannot estimate “sender” specific effects

25



Binary

sij > sik ⇒ yij > yik
sij = 0 and di < n ⇒ yij ≤ 0

sij > 0 ⇒ yij > 0 } B (S)
sij = 0 ⇒ yij < 0

I Neither fully informative nor valid!

I Discards information on the ranks

I Ignores the censoring on the outdegrees

I In particular: F (S) 6⊂ B (S)
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Bayesian estimation

I The FRN, rank and binary likelihoods can be expressed as:

LF (θ : S) =Pr (Y ∈ F (S)|θ) =

∫
F (S)

dP (Y |θ)

LR (θ : S) =Pr (Y ∈ R (S)|θ) =

∫
R(S)

dP (Y |θ)

LB (θ : S) =Pr (Y ∈ B (S)|θ) =

∫
B(S)

dP (Y |θ)

I Generally intractable
I Inference for θ can proceed using a MCMC approximation:

I Given the observed ranks S and a prior distribution p (θ)
I Generate a Markov chain whose stationary distribution is that

of (θ,Y ) given Y ∈ F (S), R (S) or B (S)

I Allows for imputation of missing sij
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Bayesian Estimation for FRN

Model: Y ∼ p(Y |θ), θ ∈ Θ

Data: Y ∈ F (S)

Estimation: Given p(θ), p(θ|Y ∈ F (S)) can be approximated
by a Gibbs sampler:

I Simulate θ ∼ p(θ|Y ).
I Simulate yij ∼ p(yij |θ,Y−ij ,Y ∈ F (S)):

1. sij > 0: yij ∼ p(yij |θ,Y−ij)1yij∈(a,b) where
a = max(yik : sik < sij) and b = min(yik : sik > sij).

2. sij = 0 and di < m: yij ∼ p(yij |Y−ij , θ)1yij≤0.
3. sij = 0 and di = m: yij ∼ p(yij |Y−ij , θ)1yij≤min(yik :sik>0)
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Simulations
Letting θ before represent the parameters in a regression model, we
generated Y from the following Social Relations Model:

yij = βtxij + ai + bj + εij(
ai
bi

)
iid∼ normal (0,Σab)(

εij
εji

)
iid∼ normal

(
0, σ2

(
1 ρ
ρ 1

))

Mean model: βtxij = β0 + βrxir + βcxjc + βd1xij1 + βd2xij2
I xir , xjc : individual level variables

I xij1: pair specific variable

I xij2: co-membership in a group

βr = βc = βd1 = βd2 = 1 and β0 = −3.26

xir , xic , xij1
iid∼ N (0, 1) xij2 = zizj/.42 for zi

iid∼ binary (1/2)
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iid∼ normal (0,Σab)(

εij
εji

)
iid∼ normal

(
0, σ2

(
1 ρ
ρ 1

))
Mean model: βtxij = β0 + βrxir + βcxjc + βd1xij1 + βd2xij2
I xir , xjc : individual level variables

I xij1: pair specific variable

I xij2: co-membership in a group

βr = βc = βd1 = βd2 = 1 and β0 = −3.26

xir , xic , xij1
iid∼ N (0, 1) xij2 = zizj/.42 for zi

iid∼ binary (1/2)
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Simulations - Censoring

8 simulations for each m ∈ {5, 15} with 100 nodes each1 2 3 4 5 6 7 8
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m = 5 m = 15
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simulation

m = 5 m = 15

Confidence intervals under the three different likelihood for column
and an iid dyadic variable. The groups of three CIs are based on
binary, FRN and rank likelihoods from left to right.
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simulation

m = 5 m = 15

I Rank likelihood cannot estimate row effects

Y ∈ R (S) ⇐⇒ Y + c1t ∈ R (S) ∀c ∈ Rm

I Binary likelihood poorly estimates row effects

Large amount of censoring

⇒ Heterogeneity of censored outdegrees is low

⇒ Regression coefficients estimated too low
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simulation

m = 5 m = 15

I Rank likelihood cannot estimate row effects

Y ∈ R (S) ⇐⇒ Y + c1t ∈ R (S) ∀c ∈ Rm

I Binary likelihood poorly estimates row effects

Large amount of censoring

⇒ Heterogeneity of censored outdegrees is low

⇒ Regression coefficients estimated too low
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simulation

m = 5 m = 15

I Rank likelihood cannot estimate row effects

Y ∈ R (S) ⇐⇒ Y + c1t ∈ R (S) ∀c ∈ Rm

I Binary likelihood poorly estimates row effects

Large amount of censoring

⇒ Heterogeneity of censored outdegrees is low

⇒ Regression coefficients estimated too low
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simulation

m = 5 m = 15

I Rank likelihood cannot estimate row effects

Y ∈ R (S) ⇐⇒ Y + c1t ∈ R (S) ∀c ∈ Rm

I Binary likelihood poorly estimates row effects

Large amount of censoring

⇒ Heterogeneity of censored outdegrees is low

⇒ Regression coefficients estimated too low
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simulation

m = 5 m = 15

I Rank likelihood cannot estimate row effects

Y ∈ R (S) ⇐⇒ Y + c1t ∈ R (S) ∀c ∈ Rm

I Binary likelihood poorly estimates row effects

Large amount of censoring

⇒ Heterogeneity of censored outdegrees is low

⇒ Regression coefficients estimated too low
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simulation

m = 5 m = 15

Recall: xij2 ∝ zizj , an indicator of comembership to a group

Ignore the censoring

⇒ Binary likelihood underestimates row variability

⇒ Underestimate the variability in xij2
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simulation

m = 5 m = 15

Recall: xij2 ∝ zizj , an indicator of comembership to a group

Ignore the censoring

⇒ Binary likelihood underestimates row variability

⇒ Underestimate the variability in xij2
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simulation

m = 5 m = 15

Recall: xij2 ∝ zizj , an indicator of comembership to a group

Ignore the censoring

⇒ Binary likelihood underestimates row variability

⇒ Underestimate the variability in xij2
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Recall: xij2 ∝ zizj , an indicator of comembership to a group

Ignore the censoring

⇒ Binary likelihood underestimates row variability

⇒ Underestimate the variability in xij2
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Simulations - information in the ranks

Let C (S) be the set of values for which the following is true:

sij > 0⇒ yij > 0

sij = 0 and di < n⇒ yij ≤ 0

min {yij : sij > 0} ≥ max {yij : sij = 0}

We refer to LC (θ : S) = Pr (Y ∈ C (S) |θ) as the censored
binary likelihood.

I Recognizes censoring but ignores information in the ranks

I Performes similarly to FRN in the previous study

I Less precise than FRN when m is big

I When m� n, most of the information found by considering
ranked/unranked individuals as groups rather than the relative
ordering of the ranked individuals.

33



Simulations - information in the ranks

Let C (S) be the set of values for which the following is true:

sij > 0⇒ yij > 0

sij = 0 and di < n⇒ yij ≤ 0

min {yij : sij > 0} ≥ max {yij : sij = 0}

We refer to LC (θ : S) = Pr (Y ∈ C (S) |θ) as the censored
binary likelihood.

I Recognizes censoring but ignores information in the ranks

I Performes similarly to FRN in the previous study

I Less precise than FRN when m is big

I When m� n, most of the information found by considering
ranked/unranked individuals as groups rather than the relative
ordering of the ranked individuals.

33



Simulations - information in the ranks

Let C (S) be the set of values for which the following is true:

sij > 0⇒ yij > 0

sij = 0 and di < n⇒ yij ≤ 0

min {yij : sij > 0} ≥ max {yij : sij = 0}

We refer to LC (θ : S) = Pr (Y ∈ C (S) |θ) as the censored
binary likelihood.

I Recognizes censoring but ignores information in the ranks

I Performes similarly to FRN in the previous study

I Less precise than FRN when m is big

I When m� n, most of the information found by considering
ranked/unranked individuals as groups rather than the relative
ordering of the ranked individuals.

33



Simulations - information in the ranks

Let C (S) be the set of values for which the following is true:

sij > 0⇒ yij > 0

sij = 0 and di < n⇒ yij ≤ 0

min {yij : sij > 0} ≥ max {yij : sij = 0}

We refer to LC (θ : S) = Pr (Y ∈ C (S) |θ) as the censored
binary likelihood.

I Recognizes censoring but ignores information in the ranks

I Performes similarly to FRN in the previous study

I Less precise than FRN when m is big

I When m� n, most of the information found by considering
ranked/unranked individuals as groups rather than the relative
ordering of the ranked individuals.

33



Simulations - information in the ranks

Let C (S) be the set of values for which the following is true:

sij > 0⇒ yij > 0

sij = 0 and di < n⇒ yij ≤ 0

min {yij : sij > 0} ≥ max {yij : sij = 0}

We refer to LC (θ : S) = Pr (Y ∈ C (S) |θ) as the censored
binary likelihood.

I Recognizes censoring but ignores information in the ranks

I Performes similarly to FRN in the previous study

I Less precise than FRN when m is big

I When m� n, most of the information found by considering
ranked/unranked individuals as groups rather than the relative
ordering of the ranked individuals.

33



Simulations - information in the ranks

Let C (S) be the set of values for which the following is true:

sij > 0⇒ yij > 0

sij = 0 and di < n⇒ yij ≤ 0

min {yij : sij > 0} ≥ max {yij : sij = 0}

We refer to LC (θ : S) = Pr (Y ∈ C (S) |θ) as the censored
binary likelihood.

I Recognizes censoring but ignores information in the ranks

I Performes similarly to FRN in the previous study

I Less precise than FRN when m is big

I When m� n, most of the information found by considering
ranked/unranked individuals as groups rather than the relative
ordering of the ranked individuals.

33



Simulations - information in the ranks

Let C (S) be the set of values for which the following is true:

sij > 0⇒ yij > 0

sij = 0 and di < n⇒ yij ≤ 0

min {yij : sij > 0} ≥ max {yij : sij = 0}

We refer to LC (θ : S) = Pr (Y ∈ C (S) |θ) as the censored
binary likelihood.

I Recognizes censoring but ignores information in the ranks

I Performes similarly to FRN in the previous study

I Less precise than FRN when m is big

I When m� n, most of the information found by considering
ranked/unranked individuals as groups rather than the relative
ordering of the ranked individuals.

33



Simulations - information in the ranks
Same setup as before, but average uncensored outdegree is m
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Figure 2: Posterior concentration around true parameter values. The average of E[(β −
β∗)2|F (S)]/E[(β − β∗)2|C(S)] across eight simulated datasets for each m ∈ {5, 15, 30, 50}.

as the censored binomial likelihood. As the censored binomial likelihood recognizes the censoring in

FRN data, we expect it to provide parameter estimates that do not have the biases of the binomial

likelihood estimators. On the other hand, LC ignores the information in the ranks of the scored

individuals, and so we might expect it to provide less precise estimates than the FRN likelihood.

To investigate these possibilities, we obtained LC-based estimates for each of the 16 simulated

datasets described above. The posterior mean estimates and standard deviations of β were very

similar to those obtained from the FRN likelihood, indicating that the censored binomial likelihood

properly accounts for censoring in the FRN data, and that the information about β contained in the

scores of the ranked individuals is minimal, at least for these values of the simulation parameters.

To investigate this latter claim further, we performed an additional simulation study in which

the maximum number m of ranked individuals varied from 5 to 50 (out of a population of 100

individuals). Intuitively, the amount of information in the ranks should increase as the number of

ranked individuals increases, and so we might expect the posterior distributions based on the FRN

likelihood to be more concentrated around the true values than those based on LC for large values

of m.

For each m ∈ {5, 15, 30, 50}, eight datasets were simulated as in the previous simulation study,

19

Relative concentration around true value of each parameter:

Measured by E
[
(β − 1)2 |F (S)

]
/E
[
(β − 1)2 |C (S)

]
for each β

I When m� n, most of the information found by considering
ranked/unranked individuals as groups rather than the relative
ordering of the ranked individuals.
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AddHealth Data - Results
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I 622 males were asked to rank up to 5 male friends

I Fit a mean model with row, column and dyadic effects for
smoking, drinking and gpa as well as dyadic effects for
comembership in activities and grade, and a similarity-in-race
measure.
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AddHealth Data - Results (Females)
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Results across schools

Likelihood intercept row column mean-zero dyadic other dyadic
binomial 0.89 , 1.68 2.22 , 2.95 1.02 , 1.03 1.06 , 1.06 1.20 , 1.09

rank NA , NA NA , NA 1.05 , 0.98 0.99 ,0.99 1.06 , 0.98

FRN compared to Binary and Rank likelihoods:

I First: Average relative magnitudes of parameter estimates

I Second: Average relative CI widths

Summary: Under binary:

I β̂0 too negative, standard errors too small.

I |β̂r | too small, standard errors too small.
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FRN conclusion

I Binary likelihood is likely to underestimate the effects of
regressors with variation among the nominators of relations.

I Accounting for censoring is an important first step

I The FRN likelihood can be used in conjunction with latent
variable models to capture network features such as
transitivity, clustering or stochastic equivalence.
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