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Chapter 6 6.1: Introduction

Introduction

A random sample from a distribution: i .i .d . random variables
Intuitively we expect the average of many i.i.d. random variables to
be close to their mean

For example: Let X1,X2,X3, . . . be a random sample from a
N(µ, σ2) distribution and let X n = 1

n
∑n

i=1 Xi . We can show that for
any constant c

lim
n→∞

P(|X n − µ| ≤ c) = 1

The Law of large numbers gives a mathematical foundation to this
for more distributions

The Central Limit Theorem gives an approximate probability
distribution for how close the sample average is to the mean
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Chapter 6 6.2: The Law of Large Numbers

Inequalities

Theorem 6.2.1: Markov Inequality

Let X be a non-negative random variable, i.e. P(X ≥ 0) = 1. Then for
any constant t > 0

P(X ≥ t) ≤ E(X )

t

Gives a bound to how much probability can be at large values

Theorem 6.2.2: Chebychev Inequality

Let X be a random variable and suppose Var(X ) exists. Then for any
constant t > 0

P(|X − E(X )| ≥ t) ≤ Var(X )

t2

Gives a bound to how far away X is from its mean, and relates it to
the variance
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Chapter 6 6.2: The Law of Large Numbers

Example - Using the Chebychev inequality

Let X be a continuous r.v. with mean µ and variance σ2.
By using t = kσ in the Chebychev inequality we get

P(|X − µ| ≥ kσ) ≤ σ2

(kσ)2 =
1
k2

which can also be written as

P(|X − µ| ≤ kσ) ≥ 1− 1
k2

Recall: 2σ and 3σ rules for normal distributions
No matter what distribution X has:

There is at least 75% chance that X is within 2σ from its mean
(k = 2)
There is at least 88.9% chance that X is within 3σ from its mean
(k = 3)
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Chapter 6 6.2: The Law of Large Numbers

The sample mean

The sample mean is defined as X n = 1
n
∑n

i=1 Xi

Theorem 6.2.3: Mean and variance of X

Let X1, . . . ,Xn be i.i.d. random variables with mean µ and variance σ2.
Then

E(X n) = µ and Var(X n) =
σ2

n

The variance of the average is smaller than for a single random
variable
Using Chebychev’s inequality we get (for any distribution)

P(|X n − µ| ≥ t) ≤ σ2

nt2
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Chapter 6 6.2: The Law of Large Numbers

The weak Law of Large Numbers

Def: Convergence in probability

A sequence of random variables, Z1,Z2,Z3, . . . is said to converge to b
in probability if for every number ε > 0

lim
n→∞

P (|Zn − b| < ε) = 1

This is often written as
Zn

P−→ b

Theorem 6.2.4: (Weak) Law of Large Numbers (LLN)

Let X1, . . . ,Xn be i.i.d. random variables with mean µ and a finite
variance. Then

X n
P−→ µ
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Chapter 6 6.2: The Law of Large Numbers

Histogram as an approximation to a pdf

Theorem 6.2.6: Histograms

Let X1,X2,X3, . . . be a sequence of i.i.d. random variables.
Let c1 < c2 be two constants.
Define Yi = 1 if c1 ≤ Xi < c2 and Yi = 0 otherwise.

Y1, . . . ,Yn form a random sample from Bernoulli(p), where
p = P(c1 ≤ X1 < c2)

Then Y n = 1
n
∑n

i=1 Yi is the proportion of Xi ’s that lie in the interval
[c1, c2) and

Y n
P−→ P(c1 ≤ X1 < c2)

This means that the area of a bar in a histogram converges to the
probability of that interval
I.e. the histogram is an approximation to the pdf.
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Chapter 6 6.2: The Law of Large Numbers

Example: Random samples from the Beta distribution
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Chapter 6 6.3: The Central Limit Theorem

Convergence in distribution

Def: Convergence in distribution

Let X1,X2,X3, . . . be a sequence of random variables. Let Fn be the
cdf for Xn for all n and let F ∗ also be a cdf. We then say that the
sequence converges in distribution to F ∗ if

lim
n→∞

Fn(x) = F ∗(x)

for all x for which F ∗ is continuous. F ∗ is called the Asymptotic
distribution of Xn
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Chapter 6 6.3: The Central Limit Theorem

The Central Limit Theorem

Theorem 6.3.1: Central Limit Theorem (CLT)
Let X1, . . . ,Xn be i.i.d. random variables with mean µ and finite
variance σ2. Then for each fixed number x

lim
n→∞

P

(
X n − µ
σ/
√

n
≤ x

)
= Φ(x)

where Φ(x) is the standard normal cdf.

That is, √
n(X n − µ)

σ

converges in distribution to the standard normal distribution
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Chapter 6 6.3: The Central Limit Theorem

Delta method

Theorem: 6.3.2: Delta Method
Let Y1,Y2, . . . be a sequence of random variables. Suppose

an(Yn − θ) converges in distribution to F ∗(x)

where F ∗(x) is a continuous distribution and a1,a2, . . . is a sequence
of numbers such that limn→∞ an =∞.
Let g(x) be a function with a continuous derivative and g′(θ) 6= 0. Then

an(g(Yn)− g(θ))

g′(θ)
converges in distribution to F ∗(x)
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Chapter 6 6.3: The Central Limit Theorem

Example: Sample mean of Binomials

X1,X2,X3, . . . are i.i.d. Binomial with parameters k and p
Then µ = E(Xi) = kp and σ2 = Var(X ) = kp(1− p)
For large n the distribution of

√
n(X − kp)√
kp(1− p)

is approximately N(0,1)

In other words, the distribution of the sample mean X n is
approximately

N
(

kp,
kp(1− p)

n

)
For k = 10, p = 0.2 and n = 25, we have

√
n(X n − 2)√

0.064
converges in distribution to N(0,1)

Find the asymptotic distribution of log(X n)
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Chapter 6 6.3: The Central Limit Theorem

Example: Sampling from a Binomial(10,0.2) distr.
Histograms of 10,000 sample means and the normal approx. for different n
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Chapter 6 6.3: The Central Limit Theorem

Example: Sampling from a Uniform(0,1) distribution
Histograms of 10,000 sample means and the normal approx. for different n
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Chapter 6 6.3: The Central Limit Theorem

Example: Sampling from an Expo(5) distribution
Histograms of 10,000 sample means and the normal approx. for different n
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