
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bayesian Model Averaging

Hoff Chapter 9, Liang et al 2007, Hoeting et al (1999), Clyde
& George (2004) Statistical Science

November 13, 2018
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Prior Distributions

▶ Bayesian Model choice requires proper prior distributions on
parameters that are not common across models

▶ Vague but proper priors may lead to paradoxes!
▶ Conjugate Normal-Gammas lead to closed form expressions

for marginal likelihoods, Zellner’s g-prior is the most popular.
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▶ Bayesian Model choice requires proper prior distributions on
parameters that are not common across models

▶ Vague but proper priors may lead to paradoxes!
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for marginal likelihoods, Zellner’s g-prior is the most popular.
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Prior Distributions

▶ “Spike and Slab” - Lempers (1971) Mitchell & Beauchamp
(1988)

▶ “Spike and Bell” Leamer (1978) in BMA
▶ mixture of 2 normals - concentrated and dispersed - SSVS

Gibbs Sampler - George & McCulloch (1993)
▶ Back to “Spike and Bell” Hoeting, Raftery & Madigan MC3

(1997) and George & McCulloch (1997) collapsed MCMC
after integrating out βγ

▶ Conjugate Normal-Gammas lead to closed form expressions
for marginal likelihoods, Zellner’s g-prior is the most popular.
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Zellner’s g-prior
Centered model:

Y = 1nα+ Xcβ + ϵ

where Xc is the centered design matrix where all variables have
had their mean subtracted

▶ p(α) ∝ 1
▶ p(σ2) ∝ 1/σ2

▶ βγ | α, σ2,γ ∼ N(0, gσ2(Xc
γ
′Xc

γ)
−1)

which leads to marginal likelihood of Mγ that is proportional to

p(Y | Mγ) = C(1 + g)
n−p−1

2 (1 + g(1 − R2
γ))

− (n−1)
2

where R2 is the usual coefficient of determination for model Mγ .
Trade-off of model complexity versus goodness of fit

Lastly, assign distribution to space of models
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Sketch

▶ Integrate out βγ using sums of normals

▶ Find inverse of In + gPXγ (properties of projections)
▶ Find determinant of ϕ(In + gPXγ )

▶ Integrate out intercept (normal)
▶ Integrate out ϕ (gamma)
▶ algebra to simplify in from quadratic forms to R2

γ
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Priors on Model Space

p(Mγ) ⇔ p(γ)
▶ p(γj = 1) = .5 ⇒ P(Mγ) = .5p Uniform on space of models

pγ ∼ Bin(p, .5)
▶ γj | π

iid∼ Ber(π) and π ∼ Beta(a, b) then pγ ∼ BBp(a, b)

p(pγ | p, a, b) = Γ(p + 1)Γ(pγ + a)Γ(p − pγ + b)Γ(a + b)
Γ(pγ + 1)Γ(p − pγ + 1)Γ(p + a + b)Γ(a)Γ(b)

▶ pγ ∼ BBp(1, 1) ∼ Unif(0, p)
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USair Data

library(BAS)
data(usair, package="HH")
poll.bma = bas.lm(log(SO2) ~ temp + log(mfgfirms) +

log(popn) + wind +
precip + raindays,

data=usair,
prior="g-prior",
alpha=nrow(usair), # g = n
n.models=2^6,
modelprior = uniform(),
method="deterministic")
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Summary

poll.bma

##
## Call:
## bas.lm(formula = log(SO2) ~ temp + log(mfgfirms) + log(popn) +
## wind + precip + raindays, data = usair, n.models = 2^6, prior = "g-prior",
## alpha = nrow(usair), modelprior = uniform(), method = "deterministic")
##
##
## Marginal Posterior Inclusion Probabilities:
## Intercept temp log(mfgfirms) log(popn) wind
## 1.0000 0.9755 0.7190 0.2757 0.7654
## precip raindays
## 0.5994 0.3104
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Plots

par(mfrow=c(2,2))
plot(poll.bma, ask=F)

2.5 3.0 3.5

−
1.

0
0.

0
1.

0

Predictions under BMA

R
es

id
ua

ls

Residuals vs Fitted
31

25

11

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

Model Search Order

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y Model Probabilities

1 2 3 4 5 6 7

−
4

0
4

8

Model Dimension

lo
g(

M
ar

gi
na

l)

Model Complexity
10

8
0.

0
0.

4
0.

8

M
ar

gi
na

l I
nc

lu
si

on
 P

ro
ba

bi
lit

y

In
te

rc
ep

t

te
m

p

lo
g(

m
fg

fir
m

s)

lo
g(

po
pn

)

w
in

d

pr
ec

ip

ra
in

da
ys

Inclusion Probabilities



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Posterior Distribution with Uniform Prior on Model Space
image(poll.bma, rotate=FALSE)

3.367 2.171 1.804 1.56 1.222 1.061 0.825 0.73
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Model Rank

Log Posterior Odds
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wind

log(popn)
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temp

Intercept
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Posterior Distribution with BB(1,1) Prior on Model Space

poll.bb.bma = bas.lm(log(SO2) ~ temp + log(mfgfirms) +
log(popn) + wind +
precip + raindays,

data=usair,
prior="g-prior",
alpha=nrow(usair),
n.models=2^6, #enumerate
modelprior=beta.binomial(1,1))
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BB(1,1) Prior on Model Space
image(poll.bb.bma, rotate=FALSE)

3.123 2.476 2.413 2.172 1.733 1.447 1.029 0.774 0.198
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Jeffreys Scale of Evidence

▶ Bayes Factor = ratio of marginal likelihoods

▶ Posterior odds = Bayes Factor × Prior odds
B = BF[M0 : Mγ ] and 1/B = BF[Mγ : M0]

Bayes Factor Interpretation
B ≥ 1 H0 supported

1 > B ≥ 10− 1
2 minimal evidence against H0

10− 1
2 > B ≥ 10−1 substantial evidence against H0

10−1 > B ≥ 10−2 strong evidence against H0
10−2 > B decisive evidence against H0

in context of testing one hypothesis with equal prior odds Kass &
Raftery (JASA 1996)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Jeffreys Scale of Evidence

▶ Bayes Factor = ratio of marginal likelihoods
▶ Posterior odds = Bayes Factor × Prior odds

B = BF[M0 : Mγ ] and 1/B = BF[Mγ : M0]

Bayes Factor Interpretation
B ≥ 1 H0 supported

1 > B ≥ 10− 1
2 minimal evidence against H0

10− 1
2 > B ≥ 10−1 substantial evidence against H0

10−1 > B ≥ 10−2 strong evidence against H0
10−2 > B decisive evidence against H0

in context of testing one hypothesis with equal prior odds Kass &
Raftery (JASA 1996)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Jeffreys Scale of Evidence

▶ Bayes Factor = ratio of marginal likelihoods
▶ Posterior odds = Bayes Factor × Prior odds

B = BF[M0 : Mγ ] and 1/B = BF[Mγ : M0]

Bayes Factor Interpretation
B ≥ 1 H0 supported

1 > B ≥ 10− 1
2 minimal evidence against H0

10− 1
2 > B ≥ 10−1 substantial evidence against H0

10−1 > B ≥ 10−2 strong evidence against H0
10−2 > B decisive evidence against H0

in context of testing one hypothesis with equal prior odds Kass &
Raftery (JASA 1996)
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▶ Bayes Factor = ratio of marginal likelihoods
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Bayes Factor Interpretation
B ≥ 1 H0 supported
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2 minimal evidence against H0

10− 1
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in context of testing one hypothesis with equal prior odds Kass &
Raftery (JASA 1996)
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Jeffreys Scale of Evidence

▶ Bayes Factor = ratio of marginal likelihoods
▶ Posterior odds = Bayes Factor × Prior odds

B = BF[M0 : Mγ ] and 1/B = BF[Mγ : M0]

Bayes Factor Interpretation
B ≥ 1 H0 supported

1 > B ≥ 10− 1
2 minimal evidence against H0

10− 1
2 > B ≥ 10−1 substantial evidence against H0

10−1 > B ≥ 10−2 strong evidence against H0
10−2 > B decisive evidence against H0

in context of testing one hypothesis with equal prior odds Kass &
Raftery (JASA 1996)
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Coefficients
beta = coef(poll.bma)
par(mfrow=c(2,3)); plot(beta, subset=2:7,ask=F)
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Bartlett’s Paradox

The Bayes factor for comparing Mγ to the null model:

BF(Mγ : M0) = (1 + g)(n−1−pγ)/2(1 + g(1 − R2))−(n−1)/2

▶ For fixed sample size n and R2, consider taking values of g
that go to infinity

▶ Increasing vagueness in prior
▶ What happens to BF as g → ∞?
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Bartlett’s Paradox

The Bayes factor for comparing Mγ to the null model:

BF(Mγ : M0) = (1 + g)(n−1−pγ)/2(1 + g(1 − R2))−(n−1)/2

▶ For fixed sample size n and R2, consider taking values of g
that go to infinity

▶ Increasing vagueness in prior
▶ What happens to BF as g → ∞?
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Bartlett’s Paradox

The Bayes factor for comparing Mγ to the null model:

BF(Mγ : M0) = (1 + g)(n−1−pγ)/2(1 + g(1 − R2))−(n−1)/2

▶ For fixed sample size n and R2, consider taking values of g
that go to infinity

▶ Increasing vagueness in prior

▶ What happens to BF as g → ∞?
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Bartlett’s Paradox

The Bayes factor for comparing Mγ to the null model:

BF(Mγ : M0) = (1 + g)(n−1−pγ)/2(1 + g(1 − R2))−(n−1)/2

▶ For fixed sample size n and R2, consider taking values of g
that go to infinity

▶ Increasing vagueness in prior
▶ What happens to BF as g → ∞?
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Information Paradox

The Bayes factor for comparing Mγ to the null model:

BF(Mγ : M0) = (1 + g)(n−1−pγ)/2(1 + g(1 − R2))−(n−1)/2

▶ Let g be a fixed constant and take n fixed.
▶ Let F =

R2
γ/pγ

(1−R2
γ)/(n−1−pγ)

▶ As R2
γ → 1, F → ∞ LR test would reject M0 where F is the

usual F statistic for comparing model Mγ to M0
▶ BF converges to a fixed constant (1+ g)−pγ/2 (does not go to

infinity
“Information Inconsistency” see Liang et al JASA 2008
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Information Paradox

The Bayes factor for comparing Mγ to the null model:

BF(Mγ : M0) = (1 + g)(n−1−pγ)/2(1 + g(1 − R2))−(n−1)/2

▶ Let g be a fixed constant and take n fixed.

▶ Let F =
R2
γ/pγ

(1−R2
γ)/(n−1−pγ)

▶ As R2
γ → 1, F → ∞ LR test would reject M0 where F is the

usual F statistic for comparing model Mγ to M0
▶ BF converges to a fixed constant (1+ g)−pγ/2 (does not go to

infinity
“Information Inconsistency” see Liang et al JASA 2008
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Information Paradox

The Bayes factor for comparing Mγ to the null model:

BF(Mγ : M0) = (1 + g)(n−1−pγ)/2(1 + g(1 − R2))−(n−1)/2

▶ Let g be a fixed constant and take n fixed.
▶ Let F =

R2
γ/pγ

(1−R2
γ)/(n−1−pγ)

▶ As R2
γ → 1, F → ∞ LR test would reject M0 where F is the

usual F statistic for comparing model Mγ to M0
▶ BF converges to a fixed constant (1+ g)−pγ/2 (does not go to

infinity
“Information Inconsistency” see Liang et al JASA 2008
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Information Paradox

The Bayes factor for comparing Mγ to the null model:

BF(Mγ : M0) = (1 + g)(n−1−pγ)/2(1 + g(1 − R2))−(n−1)/2

▶ Let g be a fixed constant and take n fixed.
▶ Let F =

R2
γ/pγ

(1−R2
γ)/(n−1−pγ)

▶ As R2
γ → 1, F → ∞ LR test would reject M0 where F is the

usual F statistic for comparing model Mγ to M0

▶ BF converges to a fixed constant (1+ g)−pγ/2 (does not go to
infinity

“Information Inconsistency” see Liang et al JASA 2008
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Information Paradox

The Bayes factor for comparing Mγ to the null model:

BF(Mγ : M0) = (1 + g)(n−1−pγ)/2(1 + g(1 − R2))−(n−1)/2

▶ Let g be a fixed constant and take n fixed.
▶ Let F =

R2
γ/pγ

(1−R2
γ)/(n−1−pγ)

▶ As R2
γ → 1, F → ∞ LR test would reject M0 where F is the

usual F statistic for comparing model Mγ to M0
▶ BF converges to a fixed constant (1+ g)−pγ/2 (does not go to

infinity
“Information Inconsistency” see Liang et al JASA 2008
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Mixtures of g priors & Information consistency

Need BF → ∞ if R2 → 1 ⇔ Eg[(1 + g)−pγ/2] diverges for
pγ < n − 1 (proof in Liang et al)

▶ Zellner-Siow Cauchy prior
▶ hyper-g prior or hyper-g/n (Liang et al JASA 2008)
▶ robust prior (Bayarrri et al Annals of Statistics 2012

All have tails that behave like a Cauchy distribution
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Mixtures of g priors & Information consistency

Need BF → ∞ if R2 → 1 ⇔ Eg[(1 + g)−pγ/2] diverges for
pγ < n − 1 (proof in Liang et al)
▶ Zellner-Siow Cauchy prior

▶ hyper-g prior or hyper-g/n (Liang et al JASA 2008)
▶ robust prior (Bayarrri et al Annals of Statistics 2012

All have tails that behave like a Cauchy distribution
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Mixtures of g priors & Information consistency

Need BF → ∞ if R2 → 1 ⇔ Eg[(1 + g)−pγ/2] diverges for
pγ < n − 1 (proof in Liang et al)
▶ Zellner-Siow Cauchy prior
▶ hyper-g prior or hyper-g/n (Liang et al JASA 2008)

▶ robust prior (Bayarrri et al Annals of Statistics 2012
All have tails that behave like a Cauchy distribution
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Mixtures of g priors & Information consistency

Need BF → ∞ if R2 → 1 ⇔ Eg[(1 + g)−pγ/2] diverges for
pγ < n − 1 (proof in Liang et al)
▶ Zellner-Siow Cauchy prior
▶ hyper-g prior or hyper-g/n (Liang et al JASA 2008)
▶ robust prior (Bayarrri et al Annals of Statistics 2012

All have tails that behave like a Cauchy distribution
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Mixtures of g priors & Information consistency

Need BF → ∞ if R2 → 1 ⇔ Eg[(1 + g)−pγ/2] diverges for
pγ < n − 1 (proof in Liang et al)
▶ Zellner-Siow Cauchy prior
▶ hyper-g prior or hyper-g/n (Liang et al JASA 2008)
▶ robust prior (Bayarrri et al Annals of Statistics 2012

All have tails that behave like a Cauchy distribution
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Mortality & Pollution
▶ Data 60 cities from Statistical Sleuth 12.17

▶ response Mortality
▶ 15 predictors; measures of HC, NOX, SO2
▶ Is pollution associated with mortality after adjusting for other

socio-economic and meteorological factors?
▶ 15 predictor variables implies 215 = 32, 768 possible models

data(ex1217, package="Sleuth3")
library(dplyr)

##
## Attaching package: 'dplyr'
## The following objects are masked from
'package:stats':
##
## filter, lag
## The following objects are masked from
'package:base':
##
## intersect, setdiff, setequal, union

mortality = mutate(ex1217,
logHC = log(HC),
logNOX = log(NOX),
logSO2 = log(SO2)) %>%

select(-CITY, -HC, -NOX, -SO2)
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Mortality & Pollution
▶ Data 60 cities from Statistical Sleuth 12.17
▶ response Mortality

▶ 15 predictors; measures of HC, NOX, SO2
▶ Is pollution associated with mortality after adjusting for other

socio-economic and meteorological factors?
▶ 15 predictor variables implies 215 = 32, 768 possible models

data(ex1217, package="Sleuth3")
library(dplyr)

##
## Attaching package: 'dplyr'
## The following objects are masked from
'package:stats':
##
## filter, lag
## The following objects are masked from
'package:base':
##
## intersect, setdiff, setequal, union

mortality = mutate(ex1217,
logHC = log(HC),
logNOX = log(NOX),
logSO2 = log(SO2)) %>%

select(-CITY, -HC, -NOX, -SO2)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Mortality & Pollution
▶ Data 60 cities from Statistical Sleuth 12.17
▶ response Mortality
▶ 15 predictors; measures of HC, NOX, SO2

▶ Is pollution associated with mortality after adjusting for other
socio-economic and meteorological factors?

▶ 15 predictor variables implies 215 = 32, 768 possible models

data(ex1217, package="Sleuth3")
library(dplyr)

##
## Attaching package: 'dplyr'
## The following objects are masked from
'package:stats':
##
## filter, lag
## The following objects are masked from
'package:base':
##
## intersect, setdiff, setequal, union

mortality = mutate(ex1217,
logHC = log(HC),
logNOX = log(NOX),
logSO2 = log(SO2)) %>%

select(-CITY, -HC, -NOX, -SO2)
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Mortality & Pollution
▶ Data 60 cities from Statistical Sleuth 12.17
▶ response Mortality
▶ 15 predictors; measures of HC, NOX, SO2
▶ Is pollution associated with mortality after adjusting for other

socio-economic and meteorological factors?

▶ 15 predictor variables implies 215 = 32, 768 possible models

data(ex1217, package="Sleuth3")
library(dplyr)

##
## Attaching package: 'dplyr'
## The following objects are masked from
'package:stats':
##
## filter, lag
## The following objects are masked from
'package:base':
##
## intersect, setdiff, setequal, union

mortality = mutate(ex1217,
logHC = log(HC),
logNOX = log(NOX),
logSO2 = log(SO2)) %>%

select(-CITY, -HC, -NOX, -SO2)
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Mortality & Pollution
▶ Data 60 cities from Statistical Sleuth 12.17
▶ response Mortality
▶ 15 predictors; measures of HC, NOX, SO2
▶ Is pollution associated with mortality after adjusting for other

socio-economic and meteorological factors?
▶ 15 predictor variables implies 215 = 32, 768 possible models

data(ex1217, package="Sleuth3")
library(dplyr)

##
## Attaching package: 'dplyr'
## The following objects are masked from
'package:stats':
##
## filter, lag
## The following objects are masked from
'package:base':
##
## intersect, setdiff, setequal, union

mortality = mutate(ex1217,
logHC = log(HC),
logNOX = log(NOX),
logSO2 = log(SO2)) %>%

select(-CITY, -HC, -NOX, -SO2)
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Jeffreys Zellner-Siow Cauchy Prior

▶ Jeffreys ”reference” prior on α and σ2

▶ Zellner-Siow Cauchy prior

1/g ∼ G(1/2, n/2)
βγ | g, σ2 ∼ N(0, gσ2(XT

γXγ)
−1)

⇒βγ | σ2 ∼ C(0, σ2(XT
γXγ)

−1)

mort.bma = bas.lm(Mortality ~ ., data=mortality,
prior="JZS",
alpha=1,
n.models=2^15,
initprobs="eplogp",
method='BAS')



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Posterior Plots
par(mfrow=c(2,2))
plot(mort.bma, ask=FALSE)
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Posterior Probabilities

▶ What is the probability that there is no pollution effect?

▶ Sum posterior model probabilities over all models that include
at least one pollution variable

models = list2matrix.which(mort.bma)
poll.inclusion = (models[, 14:16] %*% rep(1, 3)) > 0
prob.poll = sum(poll.inclusion * mort.bma$postprobs)
prob.poll

## [1] 0.9829953

▶ Posterior probability no effect is 0.017
▶ Odds that there is an effect 0.983/0.017 = 57.8073
▶ Prior Odds 7 = (1 − .53)/.53
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Posterior Probabilities

▶ What is the probability that there is no pollution effect?
▶ Sum posterior model probabilities over all models that include

at least one pollution variable

models = list2matrix.which(mort.bma)
poll.inclusion = (models[, 14:16] %*% rep(1, 3)) > 0
prob.poll = sum(poll.inclusion * mort.bma$postprobs)
prob.poll

## [1] 0.9829953

▶ Posterior probability no effect is 0.017
▶ Odds that there is an effect 0.983/0.017 = 57.8073
▶ Prior Odds 7 = (1 − .53)/.53
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Posterior Probabilities

▶ What is the probability that there is no pollution effect?
▶ Sum posterior model probabilities over all models that include

at least one pollution variable

models = list2matrix.which(mort.bma)
poll.inclusion = (models[, 14:16] %*% rep(1, 3)) > 0
prob.poll = sum(poll.inclusion * mort.bma$postprobs)
prob.poll

## [1] 0.9829953

▶ Posterior probability no effect is 0.017
▶ Odds that there is an effect 0.983/0.017 = 57.8073
▶ Prior Odds 7 = (1 − .53)/.53
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Posterior Probabilities

▶ What is the probability that there is no pollution effect?
▶ Sum posterior model probabilities over all models that include

at least one pollution variable

models = list2matrix.which(mort.bma)
poll.inclusion = (models[, 14:16] %*% rep(1, 3)) > 0
prob.poll = sum(poll.inclusion * mort.bma$postprobs)
prob.poll

## [1] 0.9829953

▶ Posterior probability no effect is 0.017

▶ Odds that there is an effect 0.983/0.017 = 57.8073
▶ Prior Odds 7 = (1 − .53)/.53
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Posterior Probabilities

▶ What is the probability that there is no pollution effect?
▶ Sum posterior model probabilities over all models that include

at least one pollution variable
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poll.inclusion = (models[, 14:16] %*% rep(1, 3)) > 0
prob.poll = sum(poll.inclusion * mort.bma$postprobs)
prob.poll
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▶ Odds that there is an effect 0.983/0.017 = 57.8073

▶ Prior Odds 7 = (1 − .53)/.53
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▶ Sum posterior model probabilities over all models that include
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▶ Posterior probability no effect is 0.017
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▶ What is the probability that there is no pollution effect?
▶ Sum posterior model probabilities over all models that include

at least one pollution variable

models = list2matrix.which(mort.bma)
poll.inclusion = (models[, 14:16] %*% rep(1, 3)) > 0
prob.poll = sum(poll.inclusion * mort.bma$postprobs)
prob.poll

## [1] 0.9829953

▶ Posterior probability no effect is 0.017
▶ Odds that there is an effect 0.983/0.017 = 57.8073
▶ Prior Odds 7 = (1 − .53)/.53
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Model Space
image(mort.bma)
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Effect Estimation

▶ Coefficients in each model are adjusted for other variables in
the model

▶ OLS: leave out a predictor with a non-zero coefficient then
estimates are biased!

▶ Model Selection in the presence of high correlation, may leave
out ”redundant” variables;

▶ improved MSE for prediction (Bias-variance tradeoff)
▶ in BMA all variables are included, but coefficients are shrunk

to 0
▶ Care for ”causal” questions and confounder adjustment!
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Other Problems

▶ Computational

if p > 35 enumeration is difficult
▶ Gibbs sampler or Random-Walk algorithm on γ
▶ poor convergence/mixing with high correlations
▶ Metropolis Hastings algorithms more flexibility
▶ ”Stochastic Search” (no guarantee samples represent posterior)

▶ Prior Choice: Choice of prior distributions on β and on γ

Model averaging versus Model Selection – what are objectives?
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▶ Computational if p > 35 enumeration is difficult

▶ Gibbs sampler or Random-Walk algorithm on γ
▶ poor convergence/mixing with high correlations
▶ Metropolis Hastings algorithms more flexibility
▶ ”Stochastic Search” (no guarantee samples represent posterior)

▶ Prior Choice: Choice of prior distributions on β and on γ

Model averaging versus Model Selection – what are objectives?
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▶ poor convergence/mixing with high correlations
▶ Metropolis Hastings algorithms more flexibility
▶ ”Stochastic Search” (no guarantee samples represent posterior)

▶ Prior Choice: Choice of prior distributions on β and on γ

Model averaging versus Model Selection – what are objectives?
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▶ Gibbs sampler or Random-Walk algorithm on γ
▶ poor convergence/mixing with high correlations
▶ Metropolis Hastings algorithms more flexibility

▶ ”Stochastic Search” (no guarantee samples represent posterior)
▶ Prior Choice: Choice of prior distributions on β and on γ

Model averaging versus Model Selection – what are objectives?
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▶ Computational if p > 35 enumeration is difficult
▶ Gibbs sampler or Random-Walk algorithm on γ
▶ poor convergence/mixing with high correlations
▶ Metropolis Hastings algorithms more flexibility
▶ ”Stochastic Search” (no guarantee samples represent posterior)

▶ Prior Choice: Choice of prior distributions on β and on γ

Model averaging versus Model Selection – what are objectives?
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