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Centered model:
Y=1,a+XB+e¢

where X€ is the centered design matrix where all variables have
had their mean subtracted

> p(a) x 1

> p(o?) o 1/02

> B, | 0%,y ~ N(0,g0%(X5'X5) )

which leads to marginal likelihood of M, that is proportional to

(n=1)

(1+g1-R))™ 2

n—p—1
2

p(Y M) =Cl+g) >

where R? is the usual coefficient of determination for model M.
Trade-off of model complexity versus goodness of fit

Lastly, assign distribution to space of models
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Sketch
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Integrate out 3. using sums of normals

Find inverse of I, + gPx, (properties of projections)
Find determinant of ¢(l, + gPx.,)

Integrate out intercept (normal)

Integrate out ¢ (gamma)

algebra to simplify in from quadratic forms to RZ



Priors on Model Space

p(M;) < p(7)
» p(yj=1) =.5= P(M,) = .57 Uniform on space of models



Priors on Model Space

p(M;) < p(7)
» p(yj=1) =.5= P(M,) = .57 Uniform on space of models
P~y ~ Bm(pa 5)

> | i Ber(7) and m ~ Beta(a, b) then p, ~ BB,(a, b)

F(p+ 1)l (py + ) (p— py + b)T(a+ b)

Aoy [P-2:0) = £ S (o~ py + D)o+ 2+ BI(T(B)

> py ~ BBp(1,1) ~ Unif(0, p)



USair Data

library (BAS)
data(usair, package="HH")
poll.bma = bas.lm(log(S02) ~ temp + log(mfgfirms) +
log(popn) + wind +
precip + raindays,
data=usair,
prior="g-prior",
alpha=nrow(usair), # g = n
n.models=2"6,
modelprior = uniform(),
method="deterministic")



Summary

poll.bma

#i

## Call:

## bas.lm(formula = log(S02) ~ temp + log(mfgfirms) + log(popn)
#i#t wind + precip + raindays, data = usair, n.models = 276, p
## alpha = nrow(usair), modelprior = uniform(), method = "de
#i#

#i#

## Marginal Posterior Inclusion Probabilities:

## Intercept temp log(mfgfirms) log(popn)

## 1.0000 0.9755 0.7190 0.2757

#i# precip raindays

#it 0.5994 0.3104



Plots

par (mfrow=c(2,2))
plot(poll.bma, ask=F)
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Posterior Distribution with Uniform Prior on Model Space

image (poll.bma, rotate=FALSE)

Model Rank

1 2 3 4 5 6 7 8 9 10 12 14 16 20

Intercept
temp
log(mfgfirms)
log(popn)
wind

precip

raindays

3.367 2.171 1.804 1.56 1.222 1.061 0.825 0.73

Log Posterior Odds



Posterior Distribution with BB(1,1) Prior on Model Space

poll.bb.bma = bas.lm(log(S02) ~ temp + log(mfgfirms) +
log(popn) + wind +
precip + raindays,

data=usair,

prior="g-prior",
alpha=nrow(usair),
n.models=2"6, #enumerate
modelprior=beta.binomial(1,1))




BB(1,1) Prior on Model Space

image (poll.bb.bma, rotate=FALSE)

Model Rank

1 2 3 4 5 6 7 8 9 10 12 14 17

Intercept

temp

log(mfgfirms)

log(popn)

wind

precip

raindays

3.123 2.476 2.413 2.172 1.733 1.447 1.029 0.774 0.198

Log Posterior Odds
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Jeffreys Scale of Evidence

» Bayes Factor = ratio of marginal likelihoods
» Posterior odds = Bayes Factor x Prior odds

B = BF[My : M,] and 1/B = BF{M.,, : Mp]

Bayes Factor | Interpretation
B> 1| Hy supported
1>B> 102 | minimal evidence against Hp
1072 > B > 107! | substantial evidence against Hg
107! > B> 1072 | strong evidence against Hy
1072 > B | decisive evidence against Hy

in context of testing one hypothesis with equal prior odds Kass &
Raftery (JASA 1996)



Coefficients

beta = coef(poll.bma)

par (mfrow=c(2,3));
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The Bayes factor for comparing M, to the null model:

BF(M, : Mp) = (14 g)(""1=P1)/2(1 4 g(1 — R?))~(n—1)/2

» For fixed sample size n and R?, consider taking values of g
that go to infinity

P Increasing vagueness in prior

» What happens to BF as g — o0?
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Information Paradox

The Bayes factor for comparing M, to the null model:

BF(M,, : Myp) = (1 + g)(”—l—P'v)/2(1 +g(1- Rz))—(n—1)/2

> Let g be a fixed constant and take n fixed.

_ RS /Py
> Let F=tm))(n-1-py)

> As R?Y — 1, F— oo LR test would reject My where F is the
usual F statistic for comparing model M, to My
> BF converges to a fixed constant (14 g)~P/2 (does not go to
infinity
“Information Inconsistency” see Liang et al JASA 2008
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Mixtures of g priors & Information consistency

Need BF — oo if R? — 1 < E,[(1 + g)~/?] diverges for
py < n—1 (proof in Liang et al)

» Zellner-Siow Cauchy prior

» hyper-g prior or hyper-g/n (Liang et al JASA 2008)

» robust prior (Bayarrri et al Annals of Statistics 2012
All have tails that behave like a Cauchy distribution
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Mortality & Pollution

» Data 60 cities from Statistical Sleuth 12.17

P response Mortality

» 15 predictors; measures of HC, NOX, SO2

» Is pollution associated with mortality after adjusting for other
socio-economic and meteorological factors?

» 15 predictor variables implies 215 = 32, 768 possible models

data(ex1217, package="Sleuth3")
library(dplyr)

##

## Attaching package: 'dplyr'

## The following objects are masked from
'package:stats’':

##

## filter, lag

## The following objects are masked from
'package:base’:



Jeffreys Zellner-Siow Cauchy Prior

> Jeffreys "reference” prior on o and o

» Zellner-Siow Cauchy prior

1/g~ G(1/2,n/2)
:8’7 ’ 8, 02 ~ N(07g02(x‘-£_x7)_1)
=By | 0® ~ C0,0°(X]Xy) )

mort.bma = bas.lm(Mortality ~ ., data=mortality,
prior="JZS",
alpha=1,
n.models=2"15,
initprobs="eplogp",
method='BAS')



Posterior Plots

par (mfrow=c(2,2))
plot(mort.bma, ask=FALSE)

Residuals vs Fitted Model Probabilities
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» What is the probability that there is no pollution effect?

» Sum posterior model probabilities over all models that include
at least one pollution variable

models = list2matrix.which(mort.bma)

poll.inclusion = (models[, 14:16] %*% rep(1, 3)) > O
prob.poll = sum(poll.inclusion * mort.bma$postprobs)
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Model Space

image (mort.bma)
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Coefficients
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Coefficients
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Effect Estimation

» Coefficients in each model are adjusted for other variables in
the model

» OLS: leave out a predictor with a non-zero coefficient then
estimates are biased!

» Model Selection in the presence of high correlation, may leave
out "redundant” variables;

» improved MSE for prediction (Bias-variance tradeoff)

» in BMA all variables are included, but coefficients are shrunk
to 0

» Care for "causal” questions and confounder adjustment!
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Other Problems

» Computational if p > 35 enumeration is difficult

» Gibbs sampler or Random-Walk algorithm on

» poor convergence/mixing with high correlations

» Metropolis Hastings algorithms more flexibility

» "Stochastic Search” (no guarantee samples represent posterior)

» Prior Choice: Choice of prior distributions on 3 and on ~

Model averaging versus Model Selection — what are objectives?
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