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OLS

> longley.lm = lm(Employed ~ ., data=longley)
> summary(longley.lm)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.482e+03 8.904e+02 -3.911 0.003560 **
GNP.deflator 1.506e-02 8.492e-02 0.177 0.863141
GNP -3.582e-02 3.349e-02 -1.070 0.312681
Unemployed -2.020e-02 4.884e-03 -4.136 0.002535 **
Armed.Forces -1.033e-02 2.143e-03 -4.822 0.000944 ***
Population -5.110e-02 2.261e-01 -0.226 0.826212
Year 1.829e+00 4.555e-01 4.016 0.003037 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3049 on 9 degrees of freedom
Multiple R-squared: 0.9955,^^IAdjusted R-squared: 0.9925
F-statistic: 330.3 on 6 and 9 DF, p-value: 4.984e-10
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Ridge Trace
plot(MASS::lm.ridge(Employed ∼ ., data=longley))
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Generalized Cross-validation: Golub et al (1979)

> select(lm.ridge(Employed ~ ., data=longley,
lambda=seq(0, 0.1, 0.0001)))

modified HKB estimator is 0.004275357
modified L-W estimator is 0.03229531
smallest value of GCV at 0.0028

> longley.RReg = lm.ridge(Employed ~ ., data=longley,
lambda=0.0028)

> coef(longley.RReg)
GNP.deflator GNP Unemployed Armed.Forces

-2.950e+03 -5.381e-04 -1.822e-02 -1.76e-02 -9.607e-03

Population Year
-1.185e-01 1.557e+00

https://www.jstor.org/stable/1268518?seq=1#metadata_
info_tab_contents

https://www.jstor.org/stable/1268518?seq=1#metadata_info_tab_contents
https://www.jstor.org/stable/1268518?seq=1#metadata_info_tab_contents
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Bayesian Ridge: Prior on k

Reparameterization:

Y = 1α+ (I − P1)XS−1/2S1/2β + ϵ

= 1α+ Xsβs + ϵ

S = diag[(n − 1)Var(Xj)]

(Xs)TXs = Corr(X)

Hierarchical prior
▶ p(α | ϕ,βs, κ) ∝ 1
▶ βs | ϕ, κ ∼ N(0, I(ϕκ)−1)

▶ p(ϕ | κ) ∝ 1/ϕ
▶ prior on κ? Take κ | ϕ ∼ G(1/2, 1/2)
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Posterior Distributions

Joint Distribution
▶ α,βs, ϕ | κ,Y Normal-Gamma family given Y and κ

▶ κ | Y not tractable
Obtain marginal for βs via
▶ Numerical integration
▶ MCMC: Full conditionals

Pick initial values α(0),β(0)
s , ϕ(0),

Set t = 1
1. Sample κ(t) ∼ p(κ | α(t−1),β(t−1)

s , ϕ(t−1),Y)

2. Sample α(t),β(t)
s , ϕ(t) | κ(t),Y

3. Set t = t + 1 and repeat until t > T
Use Samples α(t),β(t)

s , ϕ(t), κ(t) for t = B, . . . ,T for inference
Change of variables to get back to β
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Full Conditional for κ
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Rao-Blackwellization
What is “best” estimate of βs from Bayesian perspective?
▶ Loss (βs − a)T(βs − a) under action a
▶ Decision Theory: Take action a that minimizes posterior

expected loss which is posterior mean of βs.
▶ Estimate of posterior mean is Ergodic Average of MCMC:∑

i β
(t)
s /T →

▶ Posterior mean given κ

β̃s(κ) = (XsTXs + κI)−1XsTXsβ̂s

▶ Rao-Blackwell Estimate
1
T
∑

t
(XsTXs + κ(t)I)−1XsTXsβ̂s
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Testimators & Canonical Model

UpY = LVTβs + ϵp ⇔ UpY = Lγ + ϵp

Goldstein & Smith (1974) have shown that if
1. 0 ≤ hi ≤ 1 and γ̃i = hiγ̂i

2. γ2
i

Var(γ̂i)
< 1+hi

1−hi

then γ̃i has smaller MSE than γ̂i

Case: If γ2
j < Var(γ̂i) = σ2/l2i then hi = 0 and γ̃i is better.

Apply: Estimate σ2 with SSE/(n - p - 1) and γi with γ̂i. Set hi = 0
if t-statistic is less than 1.

“testimator” - see also Sclove (JASA 1968) and Copas ( JRSSB
1983)
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Generalized Ridge

Instead of γj
iid∼ N(0, σ2/κ) take

γj
ind∼ N(0, σ2/κi)

Then Condition of Goldstein & Smith becomes

γ2
i < σ2

[
2
κi

+
1
l2i

]
▶ If li is small almost any κi will improve over OLS
▶ if l2i is large then only very small values of κi will give an

improvement.
▶ Prior on κi?
▶ Prior that can capture the feature above?
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▶ Induced prior on βs?

γj | σ2, κj
ind∼ N(0, σ2/κj) ⇔ βs ∼ N(0, σ2V K−1VT)

which is not diagonal.
▶ Or start with

βs | σ2,K ∼ N(0, σ2K−1)

▶ loss of invarince with linear transformations of Xs

▶ XsAA−1β = Zα where A−1β = α
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Related Regression on PCA
▶ Principal Components of X may be obtained via the Singular

Value Decomposition:

X = UpLVT

▶ the l2i are the eigenvalues of XTX
Y = 1α+ ULVTβ + ϵ

= 1α+ Fγ + ϵ

▶ Columns Fi ∝ Ui are the principal components of the data
multivariate data X1, . . . ,Xp

▶ If the direction Fi is ill-defined (li = 0 or λi < ϵ then we may
decide to not use Fi in the model.

▶ equivalent to setting
▶ γ̃i = γ̂i if li ≥ δ
▶ γ̃i = 0 if li < ϵ

How to choose δ? Why should Y be related to first k principal
components?
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Summary

▶ OLS can clearly be dominated by other estimators for
extimating β

▶ Lead to Bayes like estimators
▶ choice of penalties or prior hyper-parameters
▶ hierarchical model with prior on κi
▶ Shrinkage, dimension reduction & variable selection ?
▶ what loss function? Estimation versus prediction? Copas 1983


