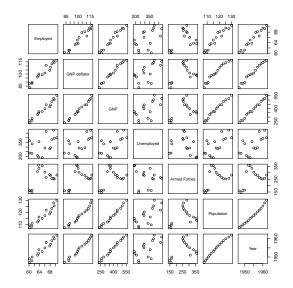
Bayesian Ridge and Shrinkage Readings Chapter 15 Christensen

STA721 Linear Models Duke University

Merlise Clyde

October 23, 2018

Longley Data



OLS

> longley.lm = lm(Employed ~ ., data=longley)

> summary(longley.lm)

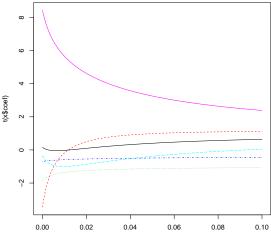
Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-3.482e+03	8.904e+02	-3.911	0.003560	**
GNP.deflator	1.506e-02	8.492e-02	0.177	0.863141	
GNP	-3.582e-02	3.349e-02	-1.070	0.312681	
Unemployed	-2.020e-02	4.884e-03	-4.136	0.002535	**
Armed.Forces	-1.033e-02	2.143e-03	-4.822	0.000944	***
Population	-5.110e-02	2.261e-01	-0.226	0.826212	
Year	1.829e+00	4.555e-01	4.016	0.003037	**
Signif. codes	s: 0 '***'	0.001 '**'	0.01 '*	' 0.05 '.	0.1 ''

Residual standard error: 0.3049 on 9 degrees of freedom Multiple R-squared: 0.9955,^^IAdjusted R-squared: 0.9925 F-statistic: 330.3 on 6 and 9 DF, p-value: 4.984e-10 1

Ridge Trace

plot(MASS::lm.ridge(Employed \sim ., data=longley))



x\$lambda

Generalized Cross-validation: Golub et al (1979)

modified HKB estimator is 0.004275357 modified L-W estimator is 0.03229531 smallest value of GCV at 0.0028

Population Year -1.185e-01 1.557e+00

https://www.jstor.org/stable/1268518?seq=1#metadata_ info_tab_contents Bayesian Ridge: Prior on k

Reparameterization:

$$\begin{aligned} \mathbf{Y} &= \mathbf{1}\alpha + (\mathbf{I} - \mathbf{P}_1)\mathbf{X}S^{-1/2}S^{1/2}\boldsymbol{\beta} + \boldsymbol{\epsilon} \\ &= \mathbf{1}\alpha + \mathbf{X}^s\boldsymbol{\beta}^s + \boldsymbol{\epsilon} \\ S &= \text{diag}[(n-1)\text{Var}(X_j)] \\ \mathbf{X}^s)^T\mathbf{X}^s &= \text{Corr}(\mathbf{X}) \end{aligned}$$

Hierarchical prior

$$p(\alpha \mid \phi, \beta^{s}, \kappa) \propto 1$$

$$\beta_{s} \mid \phi, \kappa \sim \mathsf{N}(\mathbf{0}, \mathsf{I}(\phi \kappa)^{-1})$$

$$p(\phi \mid \kappa) \propto 1/\phi$$

• prior on κ ? Take $\kappa \mid \phi \sim \mathbf{G}(1/2, 1/2)$

Posterior Distributions

Joint Distribution

- ▶ $\alpha, \beta_s, \phi \mid \kappa, \mathbf{Y}$ Normal-Gamma family given \mathbf{Y} and κ
- $\kappa \mid \mathbf{Y}$ not tractable

Obtain marginal for β_s via

- Numerical integration
- MCMC: Full conditionals Pick initial values α⁽⁰⁾, β⁽⁰⁾_s, φ⁽⁰⁾, Set t = 1
 - 1. Sample $\kappa^{(t)} \sim p(\kappa \mid \alpha^{(t-1)}, \boldsymbol{\beta}_s^{(t-1)}, \phi^{(t-1)}, \mathbf{Y})$
 - 2. Sample $\alpha^{(t)}, \beta^{(t)}_s, \phi^{(t)} \mid \kappa^{(t)}, \mathbf{Y}$
 - 3. Set t = t + 1 and repeat until t > T

Use Samples $\alpha^{(t)}, \beta_s^{(t)}, \phi^{(t)}, \kappa^{(t)}$ for $t = B, \ldots, T$ for inference Change of variables to get back to β

Full Conditional for κ

duke.eps

Rao-Blackwellization

What is "best" estimate of β_s from Bayesian perspective?

• Loss $(\beta_s - \mathbf{a})^T (\beta_s - \mathbf{a})$ under action \mathbf{a}

- Decision Theory: Take action a that minimizes posterior expected loss which is posterior mean of β_s.
- Estimate of posterior mean is Ergodic Average of MCMC: $\sum_i \beta_s^{(t)} / T \rightarrow$
- Posterior mean given κ

$$\tilde{\boldsymbol{\beta}}_{s}(\boldsymbol{\kappa}) = (\mathbf{X}^{sT}\mathbf{X}^{s} + \boldsymbol{\kappa}\mathbf{I})^{-1}\mathbf{X}^{sT}\mathbf{X}^{s}\hat{\boldsymbol{\beta}}_{s}$$

Rao-Blackwell Estimate

$$\frac{1}{T}\sum_{t} (\mathbf{X}^{sT}\mathbf{X}^{s} + \kappa^{(t)}\mathbf{I})^{-1}\mathbf{X}^{sT}\mathbf{X}^{s}\hat{\boldsymbol{\beta}}_{s}$$

Testimators & Canonical Model

$$\mathbf{U}_{p}\mathbf{Y} = LV^{T}\boldsymbol{\beta}_{s} + \boldsymbol{\epsilon}_{p} \Leftrightarrow \mathbf{U}_{p}\mathbf{Y} = L\boldsymbol{\gamma} + \boldsymbol{\epsilon}_{p}$$

Goldstein & Smith (1974) have shown that if

1.
$$0 \le h_i \le 1$$
 and $\tilde{\gamma}_i = h_i \hat{\gamma}_i$
2. $\frac{\gamma_i^2}{\operatorname{Var}(\hat{\gamma}_i)} < \frac{1+h_i}{1-h_i}$

then $\tilde{\gamma}_i$ has smaller MSE than $\hat{\gamma}_i$

Case: If $\gamma_i^2 < \text{Var}(\hat{\gamma}_i) = \sigma^2/l_i^2$ then $h_i = 0$ and $\tilde{\gamma}_i$ is better.

Apply: Estimate σ^2 with SSE/(n - p - 1) and γ_i with $\hat{\gamma}_i$. Set $h_i = 0$ if t-statistic is less than 1.

"testimator" - see also Sclove (JASA 1968) and Copas (JRSSB 1983)

Generalized Ridge

Instead of $\gamma_j \stackrel{\mathrm{iid}}{\sim} \mathsf{N}(0, \sigma^2/\kappa)$ take

$$\gamma_j \stackrel{\mathrm{ind}}{\sim} \mathsf{N}(\mathbf{0}, \sigma^2/\kappa_i)$$

Then Condition of Goldstein & Smith becomes

$$\gamma_i^2 < \sigma^2 \left[\frac{2}{\kappa_i} + \frac{1}{l_i^2} \right]$$

- If I_i is small almost any κ_i will improve over OLS
- if l²_i is large then only very small values of κ_i will give an improvement.
- Prior on κ_i ?
- Prior that can capture the feature above?

lnduced prior on β_s ?

$$\gamma_j \mid \sigma^2, \kappa_j \stackrel{\text{ind}}{\sim} \mathsf{N}(0, \sigma^2/\kappa_j) \Leftrightarrow \boldsymbol{\beta_s} \sim \mathsf{N}(\mathbf{0}, \sigma^2 \mathbf{V} \; \mathbf{K}^{-1} \mathbf{V}^T)$$

which is not diagonal.

Or start with

$$\boldsymbol{\beta_s} \mid \sigma^2, \mathbf{K} \sim \mathsf{N}(\mathbf{0}, \sigma^2 \mathbf{K}^{-1})$$

loss of invarince with linear transformations of X^s

▶ X^sAA⁻¹ β = Z α where A⁻¹ β = α

Related Regression on PCA

Principal Components of X may be obtained via the Singular Value Decomposition:

$$\mathbf{X} = \mathbf{U}_{\rho} \mathbf{L} \mathbf{V}^{T}$$

► the
$$l_i^2$$
 are the eigenvalues of $\mathbf{X}^T \mathbf{X}$
 $\mathbf{Y} = \mathbf{1}\alpha + \mathbf{U}\mathbf{L}\mathbf{V}^T\boldsymbol{\beta} + \boldsymbol{\epsilon}$
 $= \mathbf{1}\alpha + \mathbf{F}\boldsymbol{\gamma} + \boldsymbol{\epsilon}$

- Columns F_i \propto U_i are the principal components of the data multivariate data X₁,..., X_p
- If the direction F_i is ill-defined (l_i = 0 or λ_i < ε then we may decide to not use F_i in the model.
- equivalent to setting

•
$$\tilde{\gamma}_i = \hat{\gamma}_i \text{ if } l_i \ge \delta$$

•
$$\tilde{\gamma}_i = 0$$
 if $l_i < \epsilon$

How to choose δ ? Why should **Y** be related to first k principal

duke.eps

Summary

- OLS can clearly be dominated by other estimators for extimating β
- Lead to Bayes like estimators
- choice of penalties or prior hyper-parameters
- hierarchical model with prior on κ_i
- Shrinkage, dimension reduction & variable selection ?
- what loss function? Estimation versus prediction? Copas 1983